Cite this article as: |
Ziyong Chang, Sensen Niu, Zhengchang Shen, Laichang Zou, and Huajun Wang, Latest advances and progress in the microbubble flotation of fine minerals: Microbubble preparation, equipment, and applications, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1244-1260. https://doi.org/10.1007/s12613-023-2615-8 |
常自勇 E-mail: changziyong@ustb.edu.cn
[1] |
F.H. Abd El-Rahiem, Recent trends in flotation of fine particles, J. Min. World Express, 3(2014), art. No. 63. doi: 10.14355/mwe.2014.03.009
|
[2] |
P.P. Wang and P.R. Brito-Parada, Dynamics of a particle-laden bubble colliding with an air-liquid interface, Chem. Eng. J., 429(2022), art. No. 132427. doi: 10.1016/j.cej.2021.132427
|
[3] |
W.P. Du, Research progress on micro-fine particles mineral flotation, Copper. Eng., 2017, No. 2, p. 63.
|
[4] |
H.N. Wang, W.Q. Yang, X.K. Yan, L.J. Wang, Y.T. Wang, and H.J. Zhang, Regulation of bubble size in flotation: A review, J. Environ. Chem. Eng., 8(2020), art. No. 104070. doi: 10.1016/j.jece.2020.104070
|
[5] |
M. Alheshibri, J. Qian, M. Jehannin, and V.S.J. Craig, A history of nanobubbles, Langmuir, 32(2016), No. 43, p. 11086. doi: 10.1021/acs.langmuir.6b02489
|
[6] |
N. Ahmed and G.J. Jameson, The effect of bubble size on the rate of flotation of fine particles, Int. J. Miner. Process., 14(1985), No. 3, p. 195. doi: 10.1016/0301-7516(85)90003-1
|
[7] |
A.S. Reis, A.M. Reis Filho, L.R. Demuner, and M.A.S. Barrozo, Effect of bubble size on the performance flotation of fine particles of a low-grade Brazilian apatite ore, Powder Technol., 356(2019), p. 884. doi: 10.1016/j.powtec.2019.09.029
|
[8] |
Q. Zhang, S. Liu, C. Yang, F. Chen, and S. Lu, Bioreactor consisting of pressurized aeration and dissolved air flotation for domestic wastewater treatment, Sep. Purif. Technol., 138(2014), p. 186. doi: 10.1016/j.seppur.2014.10.024
|
[9] |
M. Han, Y. Park, J. Lee, and J. Shim, Effect of pressure on bubble size in dissolved air flotation, Water Supply, 2(2002), No. 5-6, p. 41. doi: 10.2166/ws.2002.0148
|
[10] |
W.Q. Qin, L.Y. Ren, P.P. Wang, C.R. Yang, and Y.S. Zhang, Efectro-flotation and collision-attachment mechanism of fine cassiterite, Trans. Nonferrous Met. Soc. China, 22(2012), No. 4, p. 917.
|
[11] |
P.K. Tsave, M. Kostoglou, T.D. Karapantsios, and N.K. Lazaridis, A hybrid device for enhancing flotation of fine particles by combining micro-bubbles with conventional bubbles, Minerals, 11(2021), No. 6, art. No. 561. doi: 10.3390/min11060561
|
[12] |
S. Calgaroto, K.Q. Wilberg, and J. Rubio, On the nanobubbles interfacial properties and future applications in flotation, Miner. Eng., 60(2014), p. 33. doi: 10.1016/j.mineng.2014.02.002
|
[13] |
Z.A. Zhou, Z.H. Xu, J.A. Finch, J.H. Masliyah, and R.S. Chow, On the role of cavitation in particle collection in flotation–A critical review. II, Miner. Eng., 22(2009), No. 5, p. 419. doi: 10.1016/j.mineng.2008.12.010
|
[14] |
Y. Chen, S.C. Chelgani, X. Bu, and G. Xie, Effect of the ultrasonic standing wave frequency on the attractive mineralization for fine coal particle flotation, Ultrason. Sonochem., 77(2021), art. No. 105682. doi: 10.1016/j.ultsonch.2021.105682
|
[15] |
Y. Peng, Y. Mao, W. Xia, and Y. Li, Ultrasonic flotation cleaning of high-ash lignite and its mechanism, Fuel, 220(2018), p. 558. doi: 10.1016/j.fuel.2018.02.049
|
[16] |
M. Kruszelnicki, A. Hassanzadeh, K.J. Legawiec, I. Polowczyk, and P.B. Kowalczuk, Effect of ultrasound pre-treatment on carbonaceous copper-bearing shale flotation, Ultrason. Sonochem., 84(2022), art. No. 105962. doi: 10.1016/j.ultsonch.2022.105962
|
[17] |
L.O. Filippov, A.S. Matinin, V.D. Samiguin, and I.V. Filippova, Effect of ultrasound on flotation kinetics in the reactor-separator, J. Phys. Conf. Ser., 416(2013), art. No. 012016. doi: 10.1088/1742-6596/416/1/012016
|
[18] |
T. Daio, I. Narita, S. Nandy, T. Hisatomi, K. Domen, and K. Suganuma, Direct observation of hydrogen bubble generation on photocatalyst particles by in situ electron microscopy, Chem. Phys. Lett., 706(2018), p. 564. doi: 10.1016/j.cplett.2018.05.081
|
[19] |
G. Shen, X.H. Zhang, Y. Ming, L.J. Zhang, Y. Zhang, and J. Hu, Photocatalytic induction of nanobubbles on TiO2 surfaces, J. Phys. Chem. C, 112(2008), No. 11, p. 4029. doi: 10.1021/jp711850d
|
[20] |
W.F. Paxton, K.C. Kistler, C.C. Olmeda, et al., Catalytic nanomotors: Autonomous movement of striped nanorods, J. Am. Chem. Soc., 126(2004), No. 41, p. 13424. doi: 10.1021/ja047697z
|
[21] |
M.H. Liu, W.C. Zhao, S. Wang, W. Guo, Y.Z. Tang, and Y.M. Dong, Study on nanobubble generation: Saline solution/water exchange method, ChemPhysChem, 14(2013), No. 11, p. 2589. doi: 10.1002/cphc.201201032
|
[22] |
S.T. Lou, J.X. Gao, X.D. Xiao, et al., Studies of nanobubbles produced at liquid/solid interfaces, Mater. Charact., 48(2002), No. 2-3, p. 211. doi: 10.1016/S1044-5803(02)00241-3
|
[23] |
W. Guo, H. Shan, M. Guan, L.H. Gao, M.H. Liu, and Y.M. Dong, Investigation on nanobubbles on graphite substrate produced by the water–NaCl solution replacement, Surf. Sci., 606(2012), No. 17-18, p. 1462. doi: 10.1016/j.susc.2012.05.018
|
[24] |
G.Z. Kyzas, A.C. Mitropoulos, and K.A. Matis, From microbubbles to nanobubbles: Effect on flotation, Processes, 9(2021), No. 8, art. No. 1287. doi: 10.3390/pr9081287
|
[25] |
M. Wu, S.Y. Yuan, H.Y. Song, and X.B. Li, Micro–nano bubbles production using a swirling-type venturi bubble generator, Chem. Eng. Process., 170(2022), art. No. 108697. doi: 10.1016/j.cep.2021.108697
|
[26] |
K. Sakamatapan, M. Mesgarpour, O. Mahian, H.S. Ahn, and S. Wongwises, Experimental investigation of the microbubble generation using a venturi-type bubble generator, Case Stud. Therm. Eng., 27(2021), art. No. 101238. doi: 10.1016/j.csite.2021.101238
|
[27] |
G. Ding, Z. Li, J. Chen, and X. Cai, An investigation on the bubble transportation of a two-stage series venturi bubble generator, Chem. Eng. Res. Des., 174(2021), p. 345. doi: 10.1016/j.cherd.2021.08.022
|
[28] |
F.Y. Ma, D.P. Tao, and Y.J. Tao, Effects of nanobubbles in column flotation of Chinese sub-bituminous coal, Int. J. Coal Prep. Util., 42(2022), No. 4, p. 1126. doi: 10.1080/19392699.2019.1692340
|
[29] |
Y. Xiong and F. Peng, Optimization of cavitation venturi tube design for pico and nano bubbles generation, Int. J. Min. Sci. Technol., 25(2015), No. 4, p. 523. doi: 10.1016/j.ijmst.2015.05.002
|
[30] |
X. Wang, S. Yuan, J. Liu, Y.M. Zhu, and Y.X. Han, Nanobubble-enhanced flotation of ultrafine molybdenite and the associated mechanism, J. Mol. Liq., 346(2022), art. No. 118312. doi: 10.1016/j.molliq.2021.118312
|
[31] |
M. Wu, H.Y. Song, X. Liang, N. Huang, and X.B. Li, Generation of micro–nano bubbles by self-developed swirl-type micro–nano bubble generator, Chem. Eng. Process., 181(2022), art. No. 109136. doi: 10.1016/j.cep.2022.109136
|
[32] |
M. Zhao, Y.C. Liu, J.X. Zhang, H. Jiang, and R.Z. Chen, Janus ceramic membranes with asymmetric wettability for high-efficient microbubble aeration, J. Membr. Sci., 671(2023), art. No. 121418. doi: 10.1016/j.memsci.2023.121418
|
[33] |
N. Hornig and U. Fritsching, Liquid dispersion in premix emulsification within porous membrane structures, J. Membr. Sci., 514(2016), p. 574. doi: 10.1016/j.memsci.2016.04.051
|
[34] |
X.H. Tao, Y.F. Liu, H. Jiang, and R.Z. Chen, Microbubble generation with shear flow on large-area membrane for fine particle flotation, Chem. Eng. Process., 145(2019), art. No. 107671. doi: 10.1016/j.cep.2019.107671
|
[35] |
B.Q. Xie, C.J. Zhou, L. Sang, X.D. Ma, and J.S. Zhang, Preparation and characterization of microbubbles with a porous ceramic membrane, Chem. Eng. Process., 159(2021), art. No. 108213. doi: 10.1016/j.cep.2020.108213
|
[36] |
L.F. Zhou, L.H. Fu, and Q. Zhang, Efficient flotation column for fine particles, Nonferrous Met., 2007, No. 2, p. 55.
|
[37] |
P.P. Zhao and Y.J. Cao, Study status of flotation technology and high effective flotation columns for fine mineral, Met. Mine, 2011, No. 12, p. 78.
|
[38] |
G.C. Wang, X.T. Bai, C.N. Wu, W. Li, K. Liu, and A. Kiani, Recent advances in the beneficiation of ultrafine coal particles, Fuel Process. Technol., 178(2018), p. 104. doi: 10.1016/j.fuproc.2018.04.035
|
[39] |
S. Li, D.F. Lu, X.H. Chen, et al., Industrial application of a modified pilot-scale Jameson cell for the flotation of spodumene ore in high altitude area, Powder Technol., 320(2017), p. 358. doi: 10.1016/j.powtec.2017.07.070
|
[40] |
C. Karagüzel and G. Çobanoğlu, Stage-wise flotation for the removal of colored minerals from feldspathic slimes using laboratory scale Jameson cell, Sep. Purif. Technol., 74(2010), No. 1, p. 100. doi: 10.1016/j.seppur.2010.05.012
|
[41] |
A. Gordiychuk, M. Svanera, S. Benini, and P. Poesio, Size distribution and sauter mean diameter of micro bubbles for a Venturi type bubble generator, Exp. Therm. Fluid Sci., 70(2016), p. 51. doi: 10.1016/j.expthermflusci.2015.08.014
|
[42] |
M. Uçurum, Influences of Jameson flotation operation variables on the kinetics and recovery of unburned carbon, Powder Technol., 191(2009), No. 3, p. 240. doi: 10.1016/j.powtec.2008.10.014
|
[43] |
Y.L. Han, J.B. Zhu, L. Shen, et al., Bubble size distribution characteristics of a jet-stirring coupling flotation device, Minerals, 9(2019), No. 6, art. No. 369. doi: 10.3390/min9060369
|
[44] |
C.Wang, Z.Wang, X.Wei, and X. Li, A numerical studyand flotation experiments of bicyclone column flotation for treating of produced water from ASPflooding, J. Water Process Eng., 32(2019), p. 100972.
|
[45] |
X.P. Sun, W.L. Liu, W.S. Wang, S. Chen, and W. Liu, Study on particle size distribution law of air flotation bubble and its influencing factors in coal slime flotation, Coal Sci. Technol., 47(2019), No. 4, p. 205.
|
[46] |
Z.Huang,J. Kuang, L. Zhu, W.Yuan, and Z. Zou, Effect ofultrasonication on the separation kinetics of scheelite andcalcite, Miner. Eng.,163(2021), art. No.106762.
|
[47] |
W. Zhao, J.Z. Qu, Z. Li, Z.Y. Yang, and A.N. Zhou, Influencing factors of electroflotation–electrocoagulation seperation of coal macerals, Clean Coal Technol., 24(2018), No. 1, p. 57.
|
[48] |
H.L. Yang, C.Y. Zhu, L. Yi, and X.M. Wu, Research present situation and new progress of flotation column for fine paticles, Hunan Nonferrous Met., 30(2014), No. 5, p. 11.
|
[49] |
H.J. Zhang, J.T. Liu, Y.T. Wang, Y.J. Cao, Z.L. Ma, and X.B. Li, Cyclonic-static micro-bubble flotation column, Miner. Eng., 45(2013), p. 1. doi: 10.1016/j.mineng.2013.01.006
|
[50] |
X.K. Yan, S.Q. Meng, A. Wang, L.J. Wang, and Y.J. Cao, Hydrodynamics and separation regimes in a cyclonic-static microbubble flotation column, Asia Pac. J. Chem. Eng., 13(2018), No. 3, art. No. e2185. doi: 10.1002/apj.2185
|
[51] |
X.K. Yan, R. Shi, Y.J. Xu, et al., Bubble behaviors in a lab-scale cyclonic-static micro-bubble flotation column, Asia Pac. J. Chem. Eng., 11(2016), No. 6, p. 939. doi: 10.1002/apj.2028
|
[52] |
J.D. Miller, Characterization of multiphase fluid flow during air-sparged hydrocyclone flotation by X-ray CT, Utah University, Salt Lake City, 1993.
|
[53] |
Q. Zhou, Y.J. Cao, X.B. Li, G.P. Niu, and Y.H. Liu, Study on cyclone-static micro-bubble flotation column of scheelite ores, Nonferrous Met. Miner. Process. Sect., 2011, No. 1, p. 39.
|
[54] |
X.W. Deng, J.T. Liu, Y.T. Wang, and Y.J. Cao, Velocity distribution of the flow field in the cyclonic zone of cyclone-static micro-bubble flotation column, Int. J. Min. Sci. Technol., 23(2013), No. 1, p. 89. doi: 10.1016/j.ijmst.2013.01.013
|
[55] |
M.J. Zhao, J.J. Fang, G.D. Li, L. Zhang, and T.M. Zhang, State and application of cyclonic static microbubble flotation column, Multipurp. Util. Miner. Resour., 2016, No. 4, p. 6.
|
[56] |
S.A. Idlas, J.A. Fitzpatrick, and J.C. Slattery, Conceptual design of packed flotation columns, Ind. Eng. Chem. Res., 29(1990), No. 6, p. 943. doi: 10.1021/ie00102a002
|
[57] |
M. Zhang, T. Li, and G. Wang, A CFD study of the flow characteristics in a packed flotation column: Implications for flotation recovery improvement, Int. J. Miner. Process., 159(2017), p. 60. doi: 10.1016/j.minpro.2017.01.004
|
[58] |
B. Wang and H. Jiang, Research and application of flotation column, Chin. J. Nonferrous Met., 31(2021), No. 4, p. 1027.
|
[59] |
Z.M. Sun, C.J. Liu, G.C. Yu, and X.G. Yuan, Prediction of distillation column performance by computational mass transfer method, Chin. J. Chem. Eng., 19(2011), No. 5, p. 833. doi: 10.1016/S1004-9541(11)60063-3
|
[60] |
W.Z. Wang, L.P. Chen, L.B. Zhao, and F.P. Li, Experimental research for application of packed flotation column to reverse flotation of hematite, Min. Process. Equip., 42(2014), No. 2, p. 97.
|
[61] |
P.Y. Zhang, S.Z. Jin, L.M. Ou, W.C. Zhang, and Y.T. Zhu, Fine bauxite recovery using a plate-packed flotation column, Metals, 10(2020), No. 9, art. No. 1184. doi: 10.3390/met10091184
|
[62] |
M. Zhang, T.L. Li, S.J. Ma, and G.C. Wang, An experimental study of copper sulfide flotation in a packed cyclonic-static microbubble flotation column, Sep. Sci. Technol., 53(2018), No. 14, p. 2238. doi: 10.1080/01496395.2018.1447963
|
[63] |
T.S. He and B.C. Chen, Discussion on fine particle flotation equipment, China Min. Mag., 3(1994), No. 4, p. 31.
|
[64] |
T. Yalcin, Magnetoflotation: Development and laboratory assessment, Int. J. Miner. Process., 34(1992), No. 1-2, p. 119. doi: 10.1016/0301-7516(92)90019-S
|
[65] |
S.X. Shi, L.J. Yang, Z.C. Shen, and S.J. Lu, Research status of fine particle flotation beneficiation methods and equipment, [in] Proceedings of the Proceedings of the Fifth National Conference on Mining and Dressing Technology Progress, Hohhot, 2006, p. 121.
|
[66] |
Z.C. Shen, D. Chen, S.X. Shi, S.J. Lu, and L. Meng, Development of BGRIMM flotation column technology, Nonferrous Met. Miner. Process. Sect., 2006, No. 6, p. 33.
|
[67] |
R.D. Deng, Q.J. Liu, T. Hu, and F.H. Ye, Concentration of high-sulfur copper ore using a three-product magnetic flotation column, Min. Metall. Explor., 30(2013), No. 2, p. 122.
|
[68] |
Y. Liao, Z. Ma, and Y. Cao, Improving reverse flotation of magnetite ore using pulse magnetic field, Miner. Eng., 138(2019), p. 108. doi: 10.1016/j.mineng.2019.04.042
|
[69] |
X.X. Tao, Y.J. Cao, J. Liu, K.Y. Shi, J.Y. Liu, and M.M. Fan, Studies on characteristics and flotation of a hard-to-float high-ash fine coal, Procedia Earth Planet. Sci., 1(2009), No. 1, p. 799. doi: 10.1016/j.proeps.2009.09.126
|
[70] |
G.J. Jameson, New directions in flotation machine design, Miner. Eng., 23(2010), No. 11-13, p. 835. doi: 10.1016/j.mineng.2010.04.001
|
[71] |
G.Q. Xu, Y.R. Chen, X.N. Bu, X.S. Dong, G.Y. Xie, and Y.J. Sun, Separation performance of mechanical flotation cell and cyclonic microbubble flotation column: In terms of the beneficiation of high-ash coal fines, Energy Sources A, 42(2020), No. 23, p. 2845. doi: 10.1080/15567036.2019.1618994
|
[72] |
M.M. Fan, D. Tao, R. Honaker, and Z.F. Luo, Nanobubble generation and its applications in froth flotation (Part IV): Mechanical cells and specially designed column flotation of coal, Min. Sci. Technol. China, 20(2010), No. 5, p. 641. doi: 10.1016/S1674-5264(09)60259-3
|
[73] |
C.W. Li, M. Xu, Y.W. Xing, H.J. Zhang, and U.A. Peuker, Efficient separation of fine coal assisted by surface nanobubbles, Sep. Purif. Technol., 249(2020), art. No. 117163. doi: 10.1016/j.seppur.2020.117163
|
[74] |
A. Sobhy and D.P. Tao, Nanobubble column flotation of fine coal particles and associated fundamentals, Int. J. Miner. Process., 124(2013), p. 109. doi: 10.1016/j.minpro.2013.04.016
|
[75] |
Z. Zhang, L. Ren, and Y. Zhang, Role of nanobubbles in the flotation of fine rutile particles, Miner. Eng., 172(2021), art. No. 107140. doi: 10.1016/j.mineng.2021.107140
|
[76] |
D. Tao, Z. Wu, and A. Sobhy, Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms, Powder Technol., 379(2021), p. 12. doi: 10.1016/j.powtec.2020.10.040
|
[77] |
G.X. Fan, J.T. Liu, Y.J. Cao, and T. Huo, Optimization of fine ilmenite flotation performed in a cyclonic-static micro-bubble flotation column, Physicochem. Probl. Miner. Pro., 50(2014), No. 2, p. 823.
|
[78] |
R. Ahmadi, D.A. Khodadadi, M. Abdollahy, and M.M. Fan, Nano–microbubble flotation of fine and ultrafine chalcopyrite particles, Int. J. Min. Sci. Technol., 24(2014), No. 4, p. 559. doi: 10.1016/j.ijmst.2014.05.021
|
[79] |
R. Ahmadi and A. Darban, Modeling and optimization of nano-bubble generation process using response surface methodology, Int. J. Nanosci. Nanotechnol., 9(2013), p. 151.
|
[80] |
Y. Cheng, Y.S. Song, B. Li, and Q.Q. Wang, Experimental research on the column flotation of micro-fine pyrite particles, Met. Mine, 2009, No. 6, p. 64.
|
[81] |
V. Chipakwe, A. Sand, and S.C. Chelgani, Nanobubble assisted flotation separation of complex Pb–Cu–Zn sulfide ore-Assessment of process readiness, Sep. Sci. Technol., 57(2022), No. 8, p. 1351. doi: 10.1080/01496395.2021.1981942
|
[82] |
Y.C. Cao, G.Y. Huang, L.Y. Yang, S.W. Liu, and Q.X. Deng, Experimental study on flotation of some copper ore by using crimm flotation cell, Hunan Nonferrous Met., 33(2017), No. 4, p. 11.
|
[83] |
P.G. Wei, L.Y. Ren, Y.M. Zhang, and S.X. Bao, Influence of microbubble on fine wolframite flotation, Minerals, 11(2021), No. 10, art. No. 1079. doi: 10.3390/min11101079
|
[84] |
J.R. Zhang, Dispersion Behavior and Mechanism of Micro-fine Fluorite and Quartz [Dissertation], Inner Mongolia University of Science and Technology, Inner Mongolia Autonomous Region, 2021.
|
[85] |
Y.T. Wang, The application and development of microbubble column flotation technology in China, Adv. Mater. Res., 136(2010), p. 194. doi: 10.4028/www.scientific.net/AMR.136.194
|
[86] |
W.S. Chen, J.T. Liu, X.B. Li, Y.J. Cao, and Y.T. Wang, Analysis of factors influencing fluorite flotation by cyclonic static micro-bubble flotation column, Met. Mine, 2008, No. 5, p. 100.
|
[87] |
S. Farrokhpay, I. Filippova, L. Filippov, A. Picarra, N. Rulyov, and D. Fornasiero, Flotation of fine particles in the presence of combined microbubbles and conventional bubbles, Miner. Eng., 155(2020), art. No. 106439. doi: 10.1016/j.mineng.2020.106439
|
[88] |
S. Calgaroto, A. Azevedo, and J. Rubio, Flotation of quartz particles assisted by nanobubbles, Int. J. Miner. Process., 137(2015), p. 64. doi: 10.1016/j.minpro.2015.02.010
|
[89] |
A.F. Rosa and J. Rubio, On the role of nanobubbles in particle–bubble adhesion for the flotation of quartz and apatitic minerals, Miner. Eng., 127(2018), p. 178. doi: 10.1016/j.mineng.2018.08.020
|
[90] |
X.N. Bu, G.Y. Xie, Y.L. Peng, and Y.R. Chen, Corrigendum to “Kinetic modeling and optimization of flotation process in a cyclonic microbubble flotation column using composite central design methodology”, Int. J. Miner. Process., 157(2016), p. 175. doi: 10.1016/j.minpro.2016.11.006
|
[91] |
F. Ma, D. Tao, Y. Tao, and S. Liu, An innovative flake graphite upgrading process based on HPGR, stirred grinding mill, and nanobubble column flotation, Int. J. Min. Sci. Technol., 31(2021), No. 6, p. 1063. doi: 10.1016/j.ijmst.2021.06.005
|
[92] |
W. Liu, Application of Jameson flotation machine in coking coal preparation plant, Coal Chem. Ind., 41(2018), No. 3, p. 129.
|
[93] |
Y. Liu, Y.J. Cao, G. Huang, J. Dong, and W.J. Zou, Semi-industrial test of a gold ore slime separation by cyclonic-static micro-bubble flotation column, Met. Mine, 2012, No. 3, p. 82.
|
[94] |
Y.F. Zhu, J.T. Liu, Y.J. Cao, and Y.T. Wang, Experimental study on copper cleaning by using cyclonic-static micro-bubble flotation column, China Mine Eng., 40(2011), No. 3, p. 13.
|
[95] |
W.Z. Wang, M.M. Han, and C.G. Yang, Applied research of cyclonic-static micro-bubble flotation column on the microfine hematite flotation, Adv. Mater. Res., 641(2013), p. 242.
|
[96] |
G.S. Zheng, J.T. Liu, L. Li, Z.J. Zhang, and H.W. Qian, Reverse flotation of the iron concentrate from magnetic separation by cyclonic static micro-bubble flotation column, Met. Mine, 2008, No. 8, p. 40.
|
[97] |
H.J. Qin, H.J. Zhang, C. He, X.T. Gao, and X. Ma, Study on the recovery of molybdenum in molybdenum cleaner tailings using cyclonic-static microbubble flotation column, China Molybdenum Ind., 40(2016), No. 4, p. 6.
|
[98] |
T.T. Zhang, Y.L. Peng, G.Y. Xie, Y.R. Chen, and X.N. Bu, Experiment of flotation of microcrystalline graphite by cyclonic micro-bubble flotation column and flotator, Non Met. Mines, 40(2017), No. 1, p. 7.
|
[99] |
L.M. Ou, L.J. Wang, Q.M. Feng, L. Wan, and J.S. Ye, Beneficiation of middle-low grade bauxite with micro-bubble flotation column, Min. Metall. Eng., 31(2011), No. 3, p. 40.
|
[100] |
R.C. Santana, J.A. Ribeiro, M.A. Santos, A.S. Reis, C.H. Ataíde, and M.A.S. Barrozo, Flotation of fine apatitic ore using microbubbles, Sep. Purif. Technol., 98(2012), p. 402. doi: 10.1016/j.seppur.2012.06.014
|
[101] |
D.P. Tao, M.M. Fan, Z.X. Wu, X.Y. Zhang, Q.S. Wang, and Z.K. Li, Investigation of effects of nanobubbles on phosphate ore flotation, Int. J. Georesources Environ., 4(2018), No. 3, p. 133.
|
[102] |
C. Li and H. Zhang, Surface nanobubbles and their roles in flotation of fine particles-A review, J. Ind. Eng. Chem., 106(2022), p. 37. doi: 10.1016/j.jiec.2021.11.009
|
[103] |
M. Buchmann, G. Öktem, M. Rudolph, and K.G.V. den Boogaart, Proposition of a bubble-particle attachment model based on DLVO van der Waals and electric double layer interactions for froth flotation modelling, Physicochem. Probl. Miner. Pro., 58(2022), No. 5.
|
[104] |
P. Knüpfer, L. Ditscherlein, and U.A. Peuker, Nanobubble enhanced agglomeration of hydrophobic powders, Colloids Surf. A, 530(2017), p. 117. doi: 10.1016/j.colsurfa.2017.07.056
|
[105] |
M.A. Hampton and A.V. Nguyen, Nanobubbles and the nanobubble bridging capillary force, Adv. Colloid Interface Sci., 154(2010), No. 1-2, p. 30. doi: 10.1016/j.cis.2010.01.006
|
[106] |
N.N. Rulyov, Combined microflotation of fine minerals: Theory and experiment, Miner. Process. Extr. Metall., 125(2016), No. 2, p. 81. doi: 10.1080/03719553.2016.1156303
|
[107] |
L. Ditscherlein, P. Knüpfer, and U.A. Peuker, The influence of nanobubbles on the interaction forces between alumina particles and ceramic foam filters, Powder Technol., 357(2019), p. 408. doi: 10.1016/j.powtec.2019.08.077
|
[108] |
C.W. Li, K.K. Zhen, Y.N. Hao, and H.J. Zhang, Effect of dissolved gases in natural water on the flotation behavior of coal, Fuel, 233(2018), p. 604. doi: 10.1016/j.fuel.2018.06.104
|
[109] |
T.B. Zhang and Q. Zhang, Research of nanobubbles enhanced reverse anionic flotation of a mid-low grade phosphate ore, Physicochem. Probl. Miner. Pro., 58(2022).
|
[110] |
E. Bird and Z. Liang, Nanobubble capillary force between parallel plates, Phys. Fluids, 34(2022), No. 1, art. No. 013301. doi: 10.1063/5.0075962
|
[111] |
F.F. Zhang, L.J. Sun, H.C. Yang, et al., Recent advances for understanding the role of nanobubbles in particles flotation, Adv. Colloid Interface Sci., 291(2021), art. No. 102403. doi: 10.1016/j.cis.2021.102403
|
[112] |
W.G. Zhou, L.M. Ou, Q. Shi, Q.M. Feng, and H. Chen, Different flotation performance of ultrafine scheelite under two hydrodynamic cavitation modes, Minerals, 8(2018), No. 7, art. No. 264. doi: 10.3390/min8070264
|
[113] |
L.Y. Ren, W.N. Zeng, Z.Y. Zhang, and P.G. Wei, Visualization of effect of micro–nano bubbles on aggregation of fine cassiterite, Chin. J. Nonferrous Met., 32(2022), No. 5, p. 1479.
|
[114] |
H. An, G. Liu, and V.S. Craig, Wetting of nanophases: Nanobubbles, nanodroplets and micropancakes on hydrophobic surfaces, Adv. Colloid Interface Sci., 222(2015), p. 9. doi: 10.1016/j.cis.2014.07.008
|
[115] |
D.J. Johnson, S.A. Al Malek, B.A.M. Al-Rashdi, and N. Hilal, Atomic force microscopy of nanofiltration membranes: Effect of imaging mode and environment, J. Membr. Sci., 389(2012), p. 486. doi: 10.1016/j.memsci.2011.11.023
|
[116] |
V.S.J. Craig, Very small bubbles at surfaces-the nanobubble puzzle, Soft Matter, 7(2011), No. 1, p. 40. doi: 10.1039/C0SM00558D
|
[117] |
F.Y. Ma, P. Zhang, and D.P. Tao, Surface nanobubble characterization and its enhancement mechanisms for fine-particle flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 727. doi: 10.1007/s12613-022-2450-3
|
[118] |
Y.W. Liu and X.R. Zhang, A review of recent theoretical and computational studies on pinned surface nanobubbles, Chin. Phys. B, 27(2018), No. 1, art. No. 014401. doi: 10.1088/1674-1056/27/1/014401
|
[119] |
D. Tao, Recent advances in fundamentals and applications of nanobubble enhanced froth flotation: A review, Miner. Eng., 183(2022), art. No. 107554. doi: 10.1016/j.mineng.2022.107554
|
[120] |
S. Ljunggren and J.C. Eriksson, The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction, Colloids Surf. A, 129-130(1997), p. 151. doi: 10.1016/S0927-7757(97)00033-2
|
[121] |
N. Ishida, T. Inoue, M. Miyahara, and K. Higashitani, Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy, Langmuir, 16(2000), No. 16, p. 6377. doi: 10.1021/la000219r
|
[122] |
A. Azevedo, R. Etchepare, S. Calgaroto, and J. Rubio, Aqueous dispersions of nanobubbles: Generation, properties and features, Miner. Eng., No.(2016), p. 29.
|
[123] |
W.A. Ducker, Contact angle and stability of interfacial nanobubbles, Langmuir, 25(2009), No. 16, p. 8907. doi: 10.1021/la902011v
|
[124] |
N.D. Petsev, M.S. Shell, and L.G. Leal, Dynamic equilibrium explanation for nanobubbles' unusual temperature and saturation dependence, Phys. Rev. E, 88(2013), No. 1, art. No. 010402. doi: 10.1103/PhysRevE.88.010402
|
[125] |
H. Peng, G.R. Birkett, and A.V. Nguyen, Origin of interfacial nanoscopic gaseous domains and formation of dense gas layer at hydrophobic solid–water interface, Langmuir, 29(2013), No. 49, p. 15266. doi: 10.1021/la403187p
|
[126] |
H. Peng, G.R. Birkett, and A.V. Nguyen, Progress on the surface nanobubble story: What is in the bubble? Why does it exist? Adv. Colloid Interface Sci., 222(2015), p. 573. doi: 10.1016/j.cis.2014.09.004
|
[127] |
P.E. Theodorakis and Z.Z. Che, Surface nanobubbles: Theory, simulation, and experiment. A review, Adv. Colloid Interface Sci., 272(2019), art. No. 101995. doi: 10.1016/j.cis.2019.101995
|
[128] |
J.R.T. Seddon, H.J.W. Zandvliet, and D. Lohse, Knudsen gas provides nanobubble stability, Phys. Rev. Lett., 107(2011), No. 11, art. No. 116101. doi: 10.1103/PhysRevLett.107.116101
|