留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1602
  • HTML全文浏览量:  539
  • PDF下载量:  76
  • 被引次数: 0
Xin Yang, Zhihong Du, Qian Zhang, Zewei Lyu, Shixue Liu, Zhijing Liu, Minfang Han,  and Hailei Zhao, Effects of operating conditions on the performance degradation and anode microstructure evolution of anode-supported solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1181-1189. https://doi.org/10.1007/s12613-023-2616-7
Cite this article as:
Xin Yang, Zhihong Du, Qian Zhang, Zewei Lyu, Shixue Liu, Zhijing Liu, Minfang Han,  and Hailei Zhao, Effects of operating conditions on the performance degradation and anode microstructure evolution of anode-supported solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1181-1189. https://doi.org/10.1007/s12613-023-2616-7
引用本文 PDF XML SpringerLink
研究论文

运行条件对阳极支撑型固体氧化物燃料电池性能退化和阳极微观结构演变的影响

  • 通讯作者:

    杜志鸿    E-mail: zhihongdu@ustb.edu.cn

    赵海雷    E-mail: hlzhao@ustb.edu.cn

文章亮点

  • (1) 系统研究了运行条件对电池性能衰减和微观结构的影响规律。
  • (2) 评价了电池长期运行稳定性并使用三维重构解析电池微观结构。
  • (3) 揭示了电池性能衰减的主要原因及其内在机理,提出改进策略。
  • 固体氧化物燃料电池(SOFCs)是一种清洁高效的发电技术,在分布式发电站、家庭热电联供以及电动汽车领域具有广阔的应用前景。然而SOFCs性能的快速衰减导致运行寿命缩短,阻碍了其商业化进程。本文旨在研究运行条件对SOFCs性能衰减和阳极微观结构演变的影响规律,给电池性能和稳定性的优化提供理论指导。本文研究了不同运行温度、放电电流密度、运行时间对电池端电压、极化阻抗以及微观结构的影响,解析了阳极微观结构演变规律。研究结果表明,电池放电初期会经历一个快速的衰减期,然后达到稳定状态。大电流密度放电会增加阳极的极化,从而加剧电池初期的衰减率。通过电池阻抗的解析发现初期衰减主要来自于阳极极化电阻的增加。通过阳极微观结构解析,发现阳极与电解质界面活性区域中的Ni催化剂的流失是导致电池运行初期性能下降的主要原因。经过初期快速衰减后,电池性能趋于稳定,在恒流放电工况下运行3000 h,极化电阻增长率仅为0.17%/kh。通过阳极微观结构的三维重构解析可知,在经历初期快速衰减后,电池阳极微观结构的变化较小,电池稳定性较好。未来的研究重点将聚焦在提高电池在复杂工况下的耐久性,并通过调控阳极组成和微观结构抑制电池性能的快速退化。
  • Research Article

    Effects of operating conditions on the performance degradation and anode microstructure evolution of anode-supported solid oxide fuel cells

    + Author Affiliations
    • Performance degradation shortens the life of solid oxide fuel cells in practical applications. Revealing the degradation mechanism is crucial for the continuous improvement of cell durability. In this work, the effects of cell operating conditions on the terminal voltage and anode microstructure of a Ni–yttria-stabilized zirconia anode-supported single cell were investigated. The microstructure of the anode active area near the electrolyte was characterized by laser optical microscopy and focused ion beam-scanning electron microscopy. Ni depletion at the anode/electrolyte interface region was observed after 100 h discharge tests. In addition, the long-term stability of the single cell was evaluated at 700°C for 3000 h. After an initial decline, the anode-supported single cell exhibits good durability with a voltage decay rate of 0.72%/kh and an electrode polarization resistance decay rate of 0.17%/kh. The main performance loss of the cell originates from the initial degradation.
    • loading
    • Supplementary Information-s12613-023-2616-7.docx
    • [1]
      N. Radenahmad, A.T. Azad, M. Saghir, et al., A review on biomass derived syngas for SOFC based combined heat and power application, Renewable Sustainable Energy Rev., 119(2020), art. No. 109560. doi: 10.1016/j.rser.2019.109560
      [2]
      B. Shri Prakash, S. Senthil Kumar, and S.T. Aruna, Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review, Renewable Sustainable Energy Rev., 36(2014), p. 149. doi: 10.1016/j.rser.2014.04.043
      [3]
      M.S. Khan, S.B. Lee, R.H. Song, J.W. Lee, T.H. Lim, and S.J. Park, Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: A review, Ceram. Int., 42(2016), No. 1, p. 35. doi: 10.1016/j.ceramint.2015.09.006
      [4]
      H. Yokokawa, H. Kishimoto, T. Shimonosono, et al., Simulation technology on SOFC durability with an emphasis on conductivity degradation of ZrO2-base electrolyte, J. Electrochem. En. Conv. Stor., 14(2017), No. 1, art. No. 011004. doi: 10.1115/1.4036038
      [5]
      S. He, M. Saunders, K.F. Chen, et al., A FIB-STEM study of strontium segregation and interface formation of directly assembled La0.6Sr0.4Co0.2Fe0.8O3–δ cathode on Y2O3–ZrO2 electrolyte of solid oxide fuel cells, J. Electrochem. Soc., 165(2018), No. 7, p. F417. doi: 10.1149/2.0151807jes
      [6]
      Y. Sun, S. He, M. Saunders, K. Chen, Z. Shao, and S.P. Jiang, A comparative study of surface segregation and interface of La0.6Sr0.4Co0.2Fe0.8O3–δ electrode on GDC and YSZ electrolytes of solid oxide fuel cells, Int. J. Hydrogen Energy, 46(2021), No. 2, p. 2606. doi: 10.1016/j.ijhydene.2020.10.113
      [7]
      H. Koide, Y. Someya, T. Yoshida, and T. Maruyama, Properties of Ni/YSZ cermet as anode for SOFC, Solid State Ionics, 132(2000), No. 3-4, p. 253. doi: 10.1016/S0167-2738(00)00652-4
      [8]
      W.Z. Zhu and S.C. Deevi, A review on the status of anode materials for solid oxide fuel cells, Mater. Sci. Eng. A, 362(2003), No. 1-2, p. 228. doi: 10.1016/S0921-5093(03)00620-8
      [9]
      N.A. Arifin, A.H. Shamsuddin, and R. Steinberger-Wilckens, Evaluating the drop of electrochemical performance of Ni/YSZ and Ni/ScSZ solid oxide fuel cells operated with dry biogas, Int. J. Energy Res., 45(2021), No. 4, p. 6405. doi: 10.1002/er.6233
      [10]
      H. He and J.M. Hill, Carbon deposition on Ni/YSZ composites exposed to humidified methane, Appl. Catal., A, 317(2007), No. 2, p. 284. doi: 10.1016/j.apcata.2006.10.040
      [11]
      N. Shi, Y. Xie, Y. Yang, et al., Review of anodic reactions in hydrocarbon fueled solid oxide fuel cells and strategies to improve anode performance and stability, Mater. Renew. Sustainable Energy, 9(2020), art. No. 6. doi: 10.1007/s40243-020-0166-8
      [12]
      Z. Cheng, J.H. Wang, Y. Choi, L. Yang, M.C. Lin, and M.L. Liu, From Ni–YSZ to sulfur-tolerant anode materials for SOFCs: Electrochemical behavior, in situ characterization, modeling, and future perspectives, Energy Environ. Sci., 4(2011), No. 11, p. 4380. doi: 10.1039/c1ee01758f
      [13]
      L. Yang, Z. Cheng, M.L. Liu, and L. Wilson, New insights into sulfur poisoning behavior of Ni–YSZ anode from long-term operation of anode-supported SOFCs, Energy Environ. Sci., 3(2010), No. 11, p. 1804. doi: 10.1039/c0ee00386g
      [14]
      L. Holzer, B. Iwanschitz, T. Hocker, et al., Microstructure degradation of cermet anodes for solid oxide fuel cells: Quantification of nickel grain growth in dry and in humid atmospheres, J. Power Sources, 196(2011), No. 3, p. 1279. doi: 10.1016/j.jpowsour.2010.08.017
      [15]
      M. Trini, S. De Angelis, P.S. Jørgensen, P.V. Hendriksen, K. Thornton, and M. Chen, Towards the validation of a phase field model for Ni coarsening in solid oxide cells, Acta Mater., 212(2021), art. No. 116887. doi: 10.1016/j.actamat.2021.116887
      [16]
      M.B. Mogensen, M. Chen, H.L. Frandsen, et al., Ni migration in solid oxide cell electrodes: Review and revised hypothesis, Fuel Cells, 21(2021), No. 5, p. 415.
      [17]
      M.B. Mogensen, A. Hauch, X. Sun, et al., Relation between Ni particle shape change and Ni migration in Ni–YSZ electrodes – A hypothesis, Fuel Cells, 17(2017), No. 4, p. 434. doi: 10.1002/fuce.201600222
      [18]
      Z.W. Lyu, S.X. Liu, Y.G. Wang, et al., Quantifying the performance evolution of solid oxide fuel cells during initial aging process, J. Power Sources, 510(2021), art. No. 230432. doi: 10.1016/j.jpowsour.2021.230432
      [19]
      D. Waldbillig, A. Wood, and D.G. Ivey, Electrochemical and microstructural characterization of the redox tolerance of solid oxide fuel cell anodes, J. Power Sources, 145(2005), No. 2, p. 206. doi: 10.1016/j.jpowsour.2004.12.071
      [20]
      A. Ploner, A. Hagen, and A. Hauch, Study of Operating Parameters for Accelerated Anode Degradation in SOFCs, Fuel Cells, 17(2017), No. 4, p. 498. doi: 10.1002/fuce.201600193
      [21]
      M.Z. Khan, R.H. Song, A. Hussain, S.B. Lee, T.H. Lim, and J.E. Hong, Effect of applied current density on the degradation behavior of anode-supported flat-tubular solid oxide fuel cells, J. Eur. Ceram. Soc., 40(2020), No. 4, p. 1407. doi: 10.1016/j.jeurceramsoc.2019.11.017
      [22]
      A.K. Hagen, R. Barfod, P.V. Hendriksen, Y.L. Liu, and S. Ramousse, Degradation of anode supported SOFCs as a function of temperature and current load, J. Electrochem. Soc., 153(2006), No. 6, art. No. A1165. doi: 10.1149/1.2193400
      [23]
      R.A. Budiman, T. Ishiyama, K.D. Bagarinao, H. Kishimoto, K. Yamaji, and T. Horita, Dependence of hydrogen oxidation reaction on water vapor in anode-supported solid oxide fuel cells, Solid State Ionics, 362(2021), art. No. 115565. doi: 10.1016/j.ssi.2021.115565
      [24]
      K. Eguchi, N. Kamiuchi, J.Y. Kim, et al., Microstructural change of Ni–GDC cermet anode in the electrolyte-supported disk-type SOFC upon daily start-up and shout-down operations, Fuel Cells, 12(2012), No. 4, p. 537. doi: 10.1002/fuce.201100204
      [25]
      T.H. Wan, M. Saccoccio, C. Chen, and F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: Implementing radial basis functions with DRTtools, Electrochim. Acta, 184(2015), p. 483. doi: 10.1016/j.electacta.2015.09.097
      [26]
      Y. Wang, X. Lin, L.J. Zhang, et al., Three-dimensional microstructural characterization of solid oxide electrolysis cell with Ce0.8Gd0.2O2-infiltrated Ni/YSZ electrode using focused ion beam-scanning electron microscopy, J. Solid State Electrochem., 25(2021), No. 5, p. 1633. doi: 10.1007/s10008-021-04926-w
      [27]
      R. Barfod, M. Mogensen, T. Klemensø, A.K. Hagen, Y.L. Liu, and P. Vang Hendriksen, Detailed characterization of anode-supported SOFCs by impedance spectroscopy, J. Electrochem. Soc., 154(2007), No. 4, art. No. B371. doi: 10.1149/1.2433311
      [28]
      J.Q. Geng, Z.J. Jiao, D. Yan, L.C. Jia, J. Pu, and J. Li, Comparative study on solid oxide fuel cell anode microstructure evolution after long-term operation, J. Power Sources, 495(2021), art. No. 229792. doi: 10.1016/j.jpowsour.2021.229792
      [29]
      A. Leonide, V. Sonn, A. Weber, and E. Ivers-Tiffée, Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells, J. Electrochem. Soc., 155(2008), No. 1, art. No. B36. doi: 10.1149/1.2801372
      [30]
      D. Papurello, D. Menichini, and A. Lanzini, Distributed relaxation times technique for the determination of fuel cell losses with an equivalent circuit model to identify physicochemical processes, Electrochim. Acta, 258(2017), p. 98. doi: 10.1016/j.electacta.2017.10.052
      [31]
      T.H. Cui, H.Y. Li, Z.W. Lyu, et al., Identification of electrode process in large-size solid oxide fuel cell, Acta Phys. Chim. Sin., 38(2020), No. 8, art. No. 2011009. doi: 10.3866/PKU.WHXB202011009
      [32]
      P. Tanasini, M. Cannarozzo, P. Costamagna, et al., Experimental and theoretical investigation of degradation mechanisms by particle coarsening in SOFC electrodes, Fuel Cells, 9(2009), No. 5, p. 740. doi: 10.1002/fuce.200800192
      [33]
      S. Koch, P.V. Hendriksen, M. Mogensen, et al., Solid oxide fuel cell performance under severe operating conditions, Fuel Cells, 6(2006), No. 2, p. 130. doi: 10.1002/fuce.200500112
      [34]
      R. Barfod, Long-term tests of DK-SOFC cells, ECS Proc. Vol., 2003-07(2003), p. 1158. doi: 10.1149/200307.1158PV
      [35]
      A. Hauch, P.S. Jørgensen, K. Brodersen, and M. Mogensen, Ni/YSZ anode–Effect of pre-treatments on cell degradation and microstructures, J. Power Sources, 196(2011), No. 21, p. 8931. doi: 10.1016/j.jpowsour.2011.01.009

    Catalog


    • /

      返回文章
      返回