留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 8
Aug.  2023

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  584
  • HTML全文浏览量:  190
  • PDF下载量:  57
  • 被引次数: 0
Shenyang Ouyang, Yanli Huang, Nan Zhou, Ming Li, Xiaotong Li, Junmeng Li, Fei Ke, and Yahui Liu, Experiment on acoustic emission response and damage evolution characteristics of polymer-modified cemented paste backfill under uniaxial compression, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1502-1514. https://doi.org/10.1007/s12613-023-2617-6
Cite this article as:
Shenyang Ouyang, Yanli Huang, Nan Zhou, Ming Li, Xiaotong Li, Junmeng Li, Fei Ke, and Yahui Liu, Experiment on acoustic emission response and damage evolution characteristics of polymer-modified cemented paste backfill under uniaxial compression, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1502-1514. https://doi.org/10.1007/s12613-023-2617-6
引用本文 PDF XML SpringerLink
研究论文

聚合物改性膏体单轴压缩过程声发射响应及损伤演化特征


  • 通讯作者:

    黄艳利    E-mail: 5306@cumt.edu.cn

文章亮点

  • (1) 系统测试了聚合物改性膏体的力学强度演化规律。
  • (2) 研究了聚合物改性膏体宏观裂纹演化特征。
  • (3) 利用声发射系统定位分析了聚合物改性膏体内部损伤裂纹。
  • 膏体(CPB)的力学性能在一定程度上影响了采空区充填控顶效果。本文通过单轴压缩试验测试了聚合物改性膏体 (PCPB)的力学强度,分析了其承载压缩过程的破坏特征;同时利用声发射技术(AE)对28 d养护龄期试样的开裂过程进行实时监测和记录,并采用双AE指标方法(上升角和平均频率)对不同加载过程的开裂模式进行了分类。结果表明:聚合物能够显著增强PCPB的力学强度(当聚灰比为0.30时,28 d强度提高了102.6%),并且随着聚合物掺量的增加,PCPB的力学强度越高。单轴压缩条件下,PCPB的宏观破坏裂纹多沿轴向方向,主裂纹贯穿试样,且主裂纹周围还分布大量小裂纹。整个加载过程中PCPB的AE响应可分为四个时期:平静期、缓慢增长期、急剧增长期和缓解期,且它们与应力-应变曲线的微孔隙压密阶段、弹性变形阶段、塑性变形阶段和破坏失稳阶段的同步性较高。AE事件主要集中在塑性变形阶段和破坏失稳阶段,且PCPB在上述四个阶段均发生了剪切破坏和拉伸破坏,但主要为拉伸破坏。
  • Research Article

    Experiment on acoustic emission response and damage evolution characteristics of polymer-modified cemented paste backfill under uniaxial compression

    + Author Affiliations
    • The mechanical properties of cemented paste backfill (CPB) determine its control effect on the goaf roof. In this study, the mechanical strength of polymer-modified cemented paste backfill (PCPB) samples was tested by uniaxial compression tests, and the failure characteristics of PCPB under the compression were analyzed. Besides, acoustic emission (AE) technology was used to monitor and record the cracking process of the PCPB sample with a curing age of 28 d, and two AE indexes (rise angle and average frequency) were used to classify the failure modes of samples under different loading processes. The results show that waterborne epoxy resin can significantly enhance the mechanical strength of PCPB samples (when the mass ratio of polymer to powder material is 0.30, the strength of PCPB samples with a curing age of 28 d is increased by 102.6%); with the increase of polymer content, the mechanical strength of PCPB samples is improved significantly in the early and middle period of curing. Under uniaxial load, the macro cracks of PCPB samples are mostly generated along the axial direction, the main crack runs through the sample, and a large number of small cracks are distributed around the main crack. The AE response of PCPB samples during the whole loading process can be divided into four periods: quiet period, slow growth period, rapid growth period, and remission period, corresponding to the micro-pore compaction stage, elastic deformation stage, plastic deformation stage, and failure instability stage of the stress–strain curve. The AE events are mainly concentrated in the plastic deformation stage; both shear failure and tensile failure occur in the above four stages, while tensile failure is dominant for PCPB samples. This study provides a reference for the safety of coal pillar recovery in pillar goaf.
    • loading
    • [1]
      J.M. Li, Y.L. Huang, S.Y. Ouyang, et al., Transparent characterization and quantitative analysis of broken gangue’s 3D fabric under the bearing compression, Int. J. Min. Sci. Technol., 32(2022), No. 2, p. 335. doi: 10.1016/j.ijmst.2021.11.013
      [2]
      X.J. Deng, Y. Li, F. Wang, et al., Experimental study on the mechanical properties and consolidation mechanism of microbial grouted backfill, Int. J. Min. Sci. Technol., 32(2022), No. 2, p. 271. doi: 10.1016/j.ijmst.2022.01.010
      [3]
      T.Z. Gao and F. He, Research of geological environment remediation and reconstruction of coal mining area in western of Shijiazhuang city, China, Adv. Mater. Res., 726-731(2013), p. 1628. doi: 10.4028/www.scientific.net/AMR.726-731.1628
      [4]
      Y. Shi, L. Cheng, M. Tao, S.S. Tong, X.J. Yao, and Y.F. Liu, Using modified quartz sand for phosphate pollution control in cemented phosphogypsum (PG) backfill, J. Cleaner Prod., 283(2021), art. No. 124652. doi: 10.1016/j.jclepro.2020.124652
      [5]
      X.J. Deng, J.X. Zhang, B. Klein, B. de Wit, and J.W. Zhang, Time-dependent lateral pressure of the filling barricade for roadway cemented backfill mining technology, Mech. Time-Depend. Mater., 24(2020), No. 1, p. 41. doi: 10.1007/s11043-018-09405-w
      [6]
      Q. Sun, J.X. Zhang, N. Zhou, and W.Y. Qi, Roadway backfill coal mining to preserve surface water in Western China, Mine Water Environ., 37(2018), No. 2, p. 366. doi: 10.1007/s10230-017-0466-0
      [7]
      A.G. Doven and A. Pekrioglu, Material properties of high volume fly ash cement paste structural fill, J. Mater. Civ. Eng., 17(2005), No. 6, p. 686. doi: 10.1061/(ASCE)0899-1561(2005)17:6(686)
      [8]
      R. Wu, P.H.S.W. Kulatilake, H. Luo, and K. Zhao, Design of the key bearing layer and secondary mining technology for previously mined areas of small coal mines, Rock Mech. Rock Eng., 53(2020), No. 4, p. 1685. doi: 10.1007/s00603-019-02001-5
      [9]
      Y. Chen, S.Q. Ma, and Q.J. Cao, Extraction of the remnant coal pillar in regular and irregular shapes: A case study, J. Loss Prev. Process Ind., 55(2018), p. 191. doi: 10.1016/j.jlp.2018.06.012
      [10]
      Y. Yu, K.Z. Deng, and S.E. Chen, Mine size effects on coal pillar stress and their application for partial extraction, Sustainability, 10(2018), No. 3, art. No. 792. doi: 10.3390/su10030792
      [11]
      R.H. Su and H.S. Shen, Physical characteristics of section coal and rock pillars under roof shock disturbances from goaf, Front. Phys., 8(2020), art. No. 223. doi: 10.3389/fphy.2020.00223
      [12]
      S. Guo, M. Fall, and S. Haruna, Interface shear behavior of cementing underground mine backfill, Int. J. Geomech., 20(2020), No. 12, art. No. 04020230. doi: 10.1061/(ASCE)GM.1943-5622.0001852
      [13]
      L. Liu, J. Xin, C. Huan, et al., Effect of curing time on the mesoscopic parameters of cemented paste backfill simulated using the particle flow code technique, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 590. doi: 10.1007/s12613-020-2007-2
      [14]
      J.H. Qin, J. Zheng, and L. Li, Experimental study of the shrinkage behavior of cemented paste backfill, J. Rock Mech. Geotech. Eng., 13(2021), No. 3, p. 545. doi: 10.1016/j.jrmge.2021.01.005
      [15]
      C.C. Qi, and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
      [16]
      L. Cui and M. Fall, Multiphysics modeling and simulation of strength development and distribution in cemented tailings backfill structures, Int. J. Concr. Struct. Mater., 12(2018), No. 1, art. No. 25. doi: 10.1186/s40069-018-0250-y
      [17]
      X.J. Deng, J.X. Zhang, B. Klein, N. Zhou, and B. deWit, Experimental characterization of the influence of solid components on the rheological and mechanical properties of cemented paste backfill, Int. J. Miner. Process., 168(2017), p. 116. doi: 10.1016/j.minpro.2017.09.019
      [18]
      D. Ma, S.B. Kong, Z.H. Li, Q. Zhang, Z.H. Wang, and Z.L. Zhou, Effect of wetting-drying cycle on hydraulic and mechanical properties of cemented paste backfill of the recycled solid wastes, Chemosphere, 282(2021), art. No. 131163. doi: 10.1016/j.chemosphere.2021.131163
      [19]
      L.H. Yang, H.J. Wang, A.X. Wu, et al., Effect of mixing time on hydration kinetics and mechanical property of cemented paste backfill, Constr. Build. Mater., 247(2020), art. No. 118516. doi: 10.1016/j.conbuildmat.2020.118516
      [20]
      B. Ercikdi, G. Külekci, and T. Yılmaz, Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings, Constr. Build. Mater., 93(2015), p. 573. doi: 10.1016/j.conbuildmat.2015.06.042
      [21]
      X.G. Zhang, J. Lin, J.X. Liu, F. Li, and Z.Z. Pang, Investigation of hydraulic-mechanical properties of paste backfill containing coal gangue-fly ash and its application in an underground coal mine, Energies, 10(2017), No. 9, art. No. 1309. doi: 10.3390/en10091309
      [22]
      X. Chen, X.Z. Shi, J. Zhou, X.H. Du, Q.S. Chen, and X.Y. Qiu, Effect of overflow tailings properties on cemented paste backfill, J. Environ. Manage., 235(2019), p. 133. doi: 10.1016/j.jenvman.2019.01.040
      [23]
      B. Ercikdi, F. Cihangir, A. Kesimal, H. Deveci, and İ. Alp, Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings, J. Hazard. Mater., 168(2009), No. 2-3, p. 848. doi: 10.1016/j.jhazmat.2009.02.100
      [24]
      E. Yilmaz, Stope depth effect on field behaviour and performance of cemented paste backfills, Int. J. Min. Reclam. Environ., 32(2018), No. 4, p. 273. doi: 10.1080/17480930.2017.1285858
      [25]
      R.V. de la Villa, R. García, S. Martínez-Ramírez, and M. Frías, Effects of calcination temperature and the addition of ZnO on coal waste activation: A mineralogical and morphological evolution, Appl. Clay Sci., 150(2017), p. 1. doi: 10.1016/j.clay.2017.08.031
      [26]
      E.H. Kadri, S. Kenai, K. Ezziane, R. Siddique, and G. De Schutter, Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar, Appl. Clay Sci., 53(2011), No. 4, p. 704. doi: 10.1016/j.clay.2011.06.008
      [27]
      C.J. Zhou, L.L. Chen, S.P. Zheng, Y.X. Xu, and D.C. Feng, Rheological, mechanical, and abrasion characteristics of polymer-modified cement mortar and concrete, Can. J. Civ. Eng., 47(2020), No. 11, p. 1226. doi: 10.1139/cjce-2019-0480
      [28]
      R. Wang, X. X. Shi, and P. M. Wang, Recent research on polymer-modified cement mortar in China, Adv. Mater. Res., 687(2013), p. 57. doi: 10.4028/www.scientific.net/AMR.687.57
      [29]
      J.P. Xiong, J.X. Deng, W. Hao, and R.P. Qin, Study on modification mechanism of the polymer modified cement concrete, Appl. Mech. Mater., 357-360(2013), p. 998. doi: 10.4028/www.scientific.net/AMM.357-360.998
      [30]
      Y. Tian, X.Y. Jin, N.G. Jin, R.Y. Zhao, Z.J. Li, and H.Y. Ma, Research on the microstructure formation of polyacrylate latex modified mortars, Constr. Build. Mater., 47(2013), p. 1381. doi: 10.1016/j.conbuildmat.2013.06.016
      [31]
      J. Mirza, M. Mirza and R. Lapointe, Laboratory and field performance of polymer-modified cement-based repair mortars in cold climates, Constr. Build. Mater., 16(2002), No. 6, p. 365. doi: 10.1016/S0950-0618(02)00027-2
      [32]
      W. Mahmood, A. Mohammed, and K. Ghafor, Viscosity, yield stress and compressive strength of cement-based grout modified with polymers, Results Mater., 4(2019), art. No. 100043. doi: 10.1016/j.rinma.2019.100043
      [33]
      X.J. Zhang, M.R. Du, H.Y. Fang, M.S. Shi, C. Zhang, and F.M. Wang, Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges, Constr. Build. Mater., 299(2021), art. No. 124290. doi: 10.1016/j.conbuildmat.2021.124290
      [34]
      Z. Naseem, E. Shamsaei, K. Sagoe-Crentsil, and W.H. Duan, Antifoaming effect of graphene oxide nanosheets in polymer-modified cement composites for enhanced microstructure and mechanical performance, Cem. Concr. Res., 158(2022), art. No. 106843. doi: 10.1016/j.cemconres.2022.106843
      [35]
      Y.P. Liu, J.T. Wang, S.G. Hu, S. Cao, and F.Z. Wang, Enhancing the mechanical behaviour of concretes through polymer modification of the aggregate-cement paste interface, J. Build. Eng., 54(2022), art. No. 104605. doi: 10.1016/j.jobe.2022.104605
      [36]
      Q. Liu, Z.Y. Lu, X.S. Hu, et al., A mechanical strong polymer-cement composite fabricated by in situ polymerization within the cement matrix, J. Build. Eng., 42(2021), art. No. 103048. doi: 10.1016/j.jobe.2021.103048
      [37]
      G.L. Xue and E. Yilmaz, Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads, Constr. Build. Mater., 338(2022), art. No. 127667. doi: 10.1016/j.conbuildmat.2022.127667
      [38]
      R. Li, Z. Leng, Y. Zhang, and X. Ma, Preparation and characterization of waterborne epoxy modified bitumen emulsion as a potential high-performance cold binder, J. Cleaner Prod., 235(2019), p. 1265. doi: 10.1016/j.jclepro.2019.06.267
      [39]
      S. Cao, E. Yilmaz, W.D. Song, E. Yilmaz, and G.L. Xue, Loading rate effect on uniaxial compressive strength behavior and acoustic emission properties of cemented tailings backfill, Constr. Build. Mater., 213(2019), p. 313. doi: 10.1016/j.conbuildmat.2019.04.082
      [40]
      Q.M. Xu, Y. Li, R.T. Xu, Y.M. Liu, and Y.M. Dong, Performance evaluation of waterborne epoxy resin modified emulsified asphalt mixtures for asphalt pavement pothole repair, Constr. Build. Mater., 325(2022), art. No. 126709. doi: 10.1016/j.conbuildmat.2022.126709
      [41]
      Y. Li, Y.C. Guo, Z.G. Lyu, and X. Wei, Investigation of the effect of waterborne epoxy resins on the hydration kinetics and performance of cement blends, Constr. Build. Mater., 301(2021), art. No. 124045. doi: 10.1016/j.conbuildmat.2021.124045
      [42]
      A. Abdukadir, Z.S. Pei, W. Yu, et al., Performance optimization of epoxy resin-based modified liquid asphalt mixtures, Case Stud. Constr. Mater., 17(2022), art. No. e01598.
      [43]
      L.X. Wang, J.W. Zhang, F.J. Wang, et al., Investigation on the effects of polyaniline/lignin composites on the performance of waterborne polyurethane coating for protecting cement-based materials, J. Build. Eng., 64(2023), art. No. 105665. doi: 10.1016/j.jobe.2022.105665
      [44]
      X.P. Song, Y.X. Hao, S. Wang, L. Zhang, W. Liu, and J.B. Li, Mechanical properties, crack evolution and damage characteristics of prefabricated fractured cemented paste backfill under uniaxial compression, Constr. Build. Mater., 330(2022), art. No. 127251. doi: 10.1016/j.conbuildmat.2022.127251
      [45]
      J. Wang, J.X. Fu, W.D. Song, Y.F. Zhang, and Y. Wang, Mechanical behavior, acoustic emission properties and damage evolution of cemented paste backfill considering structural feature, Constr. Build. Mater., 261(2020), art. No. 119958. doi: 10.1016/j.conbuildmat.2020.119958
      [46]
      S. Chakilam and L. Cui, Effect of polypropylene fiber content and fiber length on the saturated hydraulic conductivity of hydrating cemented paste backfill, Constr. Build. Mater., 262(2020), art. No. 120854. doi: 10.1016/j.conbuildmat.2020.120854
      [47]
      T. Yılmaz, B. Ercikdi, and F. Cihangir, Evaluation of the neutralization performances of the industrial waste products (IWPs) in sulphide-rich environment of cemented paste backfill, J. Environ. Manage., 258(2020), art. No. 110037. doi: 10.1016/j.jenvman.2019.110037
      [48]
      Y. Niu, X.P. Zhou, and F. Berto, Evaluation of fracture mode classification in flawed red sandstone under uniaxial compression, Theor. Appl. Fract. Mech., 107(2020), art. No. 102528. doi: 10.1016/j.tafmec.2020.102528
      [49]
      Q.Q. Zheng, Y. Xu, H. Hu, J.W. Qian, Y. Ma, and X. Gao, Quantitative damage, fracture mechanism and velocity structure tomography of sandstone under uniaxial load based on acoustic emission monitoring technology, Constr. Build. Mater., 272(2021), art. No. 121911. doi: 10.1016/j.conbuildmat.2020.121911
      [50]
      S. Shahidan, R. Pulin, N.M. Bunnori, and K.M. Holford, Damage classification in reinforced concrete beam by acoustic emission signal analysis, Constr. Build. Mater., 45(2013), p. 78. doi: 10.1016/j.conbuildmat.2013.03.095
      [51]
      N. Ouffa, M. Benzaazoua, T. Belem, R. Trauchessec, and A. Lecomte, Alkaline dissolution potential of aluminosilicate minerals for the geosynthesis of mine paste backfill, Mater. Today Commun., 24(2020), art. No. 101221. doi: 10.1016/j.mtcomm.2020.101221
      [52]
      D. Ouattara, M. Mbonimpa, A. Yahia, and T. Belem, Assessment of rheological parameters of high density cemented paste backfill mixtures incorporating superplasticizers, Constr. Build. Mater., 190(2018), p. 294. doi: 10.1016/j.conbuildmat.2018.09.066
      [53]
      M.B.C. Mangane, R. Argane, R. Trauchessec, A. Lecomte, and M. Benzaazoua, Influence of superplasticizers on mechanical properties and workability of cemented paste backfill, Miner. Eng., 116(2018), p. 3. doi: 10.1016/j.mineng.2017.11.006
      [54]
      B. Yin, Research on the Fly Ash Cemented Filling Materials and Its Modifcation and Further Application [Dissertation], Taiyuan University of Technology, Taiyuan, 2018.

    Catalog


    • /

      返回文章
      返回