留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 7
Jul.  2023

图(10)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  345
  • HTML全文浏览量:  100
  • PDF下载量:  54
  • 被引次数: 0
Zeli Jia, Xiaomeng Fan, Jiangyi He, Jimei Xue, Fang Ye, and Laifei Cheng, Evolution of microstructure and electromagnetic interference shielding performance during the ZrC precursor thermal decomposition process, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1398-1406. https://doi.org/10.1007/s12613-023-2619-4
Cite this article as:
Zeli Jia, Xiaomeng Fan, Jiangyi He, Jimei Xue, Fang Ye, and Laifei Cheng, Evolution of microstructure and electromagnetic interference shielding performance during the ZrC precursor thermal decomposition process, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1398-1406. https://doi.org/10.1007/s12613-023-2619-4
引用本文 PDF XML SpringerLink
研究论文

ZrC陶瓷有机前驱体热处理过程中微结构和电磁屏蔽性能的演变

  • 通讯作者:

    范晓孟    E-mail: fanxiaomeng@nwpu.edu.cn

文章亮点

  • (1) 系统地研究了热处理温度对聚合物转化ZrC陶瓷相组成、微结构和电磁屏蔽性能的影响
  • (2) 阐述了ZrC超高温陶瓷优异电磁屏蔽性能的机理
  • (3) 总结了相组成和微结构对聚合物转化ZrC陶瓷屏蔽性能的影响规律
  • 本工作研究了一种具有优异电磁屏蔽性能的聚合物转化ZrC陶瓷,以满足超高温要求。揭示了不同热处理温度下聚锆氧烷转化陶瓷的相组成、微结构和电磁屏蔽性能之间的关系。碳热还原反应在1300℃开始发生,在1700℃完成ZrO2到ZrC的转变。随着热处理温度的升高,大量碳相消耗,四方氧化锆逐渐转变为单斜氧化锆,在1500℃完成转变。PDC-ZrC陶瓷在900、1100、1300、1500和1700°C热处理的总平均屏蔽效能分别为11.63、22.67、22.91、22.81和34.73 dB。在热处理过程中,自由碳的石墨化程度和分布对材料的屏蔽性能起主导作用。在1700℃热处理的样品由C和ZrC形成典型的核壳结构,从而具有优异的电磁屏蔽性能。
  • Research Article

    Evolution of microstructure and electromagnetic interference shielding performance during the ZrC precursor thermal decomposition process

    + Author Affiliations
    • A polymer-derived ZrC ceramic with excellent electromagnetic interference (EMI) shielding performance was developed to meet ultra-high temperature requirements. The thermal decomposition process of ZrC organic precursor was studied to reveal the evolution of phase composition, microstructure, and EMI shielding performance. Furthermore, the carbothermal reduction reaction occurred at 1300°C, and the transition from ZrO2 to ZrC was completed at 1700°C. With the increase in the annealing temperature, the tetragonal zirconia gradually transformed into monoclinic zirconia, and the transition was completed at the annealing temperature of 1500°C due to the consumption of a large amount of the carbon phase. The average total shielding effectiveness values were 11.63, 22.67, 22.91, 22.81, and 34.73 dB when the polymer-derived ZrC was annealed at 900, 1100, 1300, 1500, and 1700°C, respectively. During the thermal decomposition process, the graphitization degree and phase distribution of free carbon played a dominant role in the shielding performance. The typical core–shell structure composed of carbon and ZrC can be formed at the annealing temperature of 1700°C, which results in excellent shielding performance.
    • loading
    • [1]
      A. Vinci, L. Zoli, D. Sciti, J. Watts, G.E. Hilmas, and W.G. Fahrenholtz, Influence of fibre content on the strength of carbon fibre reinforced HfC/SiC composites up to 2100°C, J. Eur. Ceram. Soc., 39(2019), No. 13, p. 3594. doi: 10.1016/j.jeurceramsoc.2019.04.049
      [2]
      Y.J. Jia, M.A.R. Chowdhury, and C. Xu, Electromagnetic property of polymer derived SiC–C solid solution formed at ultra-high temperature, Carbon, 162(2020), p. 74. doi: 10.1016/j.carbon.2020.02.036
      [3]
      M. Zhang, X.M. Fan, F. Ye, J.M. Xue, S.W. Fan, and L.F. Cheng, Evolution of the composition, microstructure and electromagnetic properties of HfOC ceramics with pyrolysis temperature, Ceram. Int., 48(2022), No. 12, p. 16630. doi: 10.1016/j.ceramint.2022.02.207
      [4]
      H. Zhang, C.Y. Xing, and Y.P. Cao, Research status of high-entropy boride ceramics and its application prospect in extreme environments, J. Nanjing Univ. Aeronaut. Astronaut., 53(2021), p. 112.
      [5]
      H. Li, Y.Z. Gou, S.G. Chen, and H. Wang, Synthesis and characterization of soluble and meltable Zr-containing polymers as the single-source precursor for Zr(C, N) multinary ceramics, J. Mater. Sci., 53(2018), No. 15, p. 10933. doi: 10.1007/s10853-018-2382-5
      [6]
      Y. Jia, M.A.R. Chowdhury, D. Zhang, and C. Xu, Wide-band tunable microwave-absorbing ceramic composites made of polymer-derived SiOC ceramic and in situ partially surface-oxidized ultra-high-temperature ceramics, ACS Appl. Mater. Interfaces, 11(2019), No. 49, p. 45862. doi: 10.1021/acsami.9b16475
      [7]
      X.K. Lu, X. Li, Y.J. Wang, et al., Construction of ZnIn2S4 nanosheets/3D carbon heterostructure with Schottky contact for enhancing electromagnetic wave absorption performance, Chem. Eng. J., 431(2022), art. No. 134078. doi: 10.1016/j.cej.2021.134078
      [8]
      X.K. Lu, X. Li, Y.C. Cao, et al., 1D CNT-expanded 3D carbon foam/Si3N4 sandwich heterostructure: Utilizing the polarization compensation effect for keeping stable electromagnetic absorption performance at elevated temperature, ACS Appl. Mater. Interfaces, 14(2022), No. 34, p. 39188.
      [9]
      M.H. Li, N. Chai, X.M. Liu, et al., Sustainable paper templated ultrathin, light-weight and flexible niobium carbide based films against electromagnetic interference, Carbon, 183(2021), p. 929. doi: 10.1016/j.carbon.2021.07.056
      [10]
      N. Yang and K. Lu, Effects of transition metals on the evolution of polymer-derived SiOC ceramics, Carbon, 171(2021), p. 88. doi: 10.1016/j.carbon.2020.08.072
      [11]
      Y.J. Jia, T.D. Ajayi, M.A. Roberts Jr, C.C. Chung, and C.Y. Xu, Ultrahigh-temperature ceramic-polymer-derived SiOC ceramic composites for high-performance electromagnetic interference shielding, ACS Appl. Mater. Interfaces, 12(2020), No. 41, p. 46254. doi: 10.1021/acsami.0c08479
      [12]
      Q.B. Wen, Z.J. Yu, and R. Riedel, The fate and role of in situ formed carbon in polymer-derived ceramics, Prog. Mater. Sci., 109(2020), art. No. 100623. doi: 10.1016/j.pmatsci.2019.100623
      [13]
      M.X. Li, L.F. Cheng, F. Ye, C.L. Zhang, and J. Zhou, Formation of nanocrystalline graphite in polymer-derived SiCN by polymer infiltration and pyrolysis at a low temperature, J. Adv. Ceram., 10(2021), No. 6, p. 1256. doi: 10.1007/s40145-021-0501-2
      [14]
      Z.B. Li and Y.G. Wang, Preparation of polymer-derived graphene-like carbon–silicon carbide nanocomposites as electromagnetic interference shielding material for high temperature applications, J. Alloys Compd., 709(2017), p. 313. doi: 10.1016/j.jallcom.2017.03.080
      [15]
      X.L. Liu, X.W. Yin, W.Y. Duan, F. Ye, and X.L. Li, Electromagnetic interference shielding properties of polymer derived SiC–Si3N4 composite ceramics, J. Mater. Sci. Technol., 35(2019), No. 12, p. 2832. doi: 10.1016/j.jmst.2019.07.006
      [16]
      S.V. Ushakov and A. Navrotsky, Experimental approaches to the thermodynamics of ceramics above 1500℃, J. Am. Ceram. Soc., 95(2012), No. 5, p. 1463. doi: 10.1111/j.1551-2916.2012.05102.x
      [17]
      B.W. Chen, Q. Ding, D.W. Ni, et al., Microstructure and mechanical properties of 3D Cf/SiBCN composites fabricated by polymer infiltration and pyrolysis, J. Adv. Ceram., 10(2021), No. 1, p. 28. doi: 10.1007/s40145-020-0414-5
      [18]
      J.B. Zhu and H. Yan, Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 309. doi: 10.1007/s12613-017-1409-2
      [19]
      X.L. Dang, D.L. Zhao, T. Guo, et al., Oxidation behaviors of carbon fiber reinforced multilayer SiC–Si3N4 matrix composites, J. Adv. Ceram., 11(2022), No. 2, p. 354. doi: 10.1007/s40145-021-0539-1
      [20]
      J. Lu, D. Ni, C. Liao, et al., Fabrication and microstructure evolution of Csf/ZrB2–SiC composites via direct ink writing and reactive melt infiltration, J. Adv. Ceram., 10(2021), p. 1371. doi: 10.1007/s40145-021-0512-z
      [21]
      Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
      [22]
      Y.G. Wang, X.J. Zhu, L.T. Zhang, and L.F. Cheng, Reaction kinetics and ablation properties of C/C–ZrC composites fabricated by reactive melt infiltration, Ceram. Int., 37(2011), No. 4, p. 1277. doi: 10.1016/j.ceramint.2010.12.002
      [23]
      G.B. Thiyagarajan, E. Koroleva, A. Filimonov, S. Vakhrushev, and R. Kumar, Thermally tunable dielectric performance of t-ZrO2 stabilized amorphous Si(Pb, Zr)OC ceramic nanocomposites, Mater. Chem. Phys., 277(2022), art. No. 125495. doi: 10.1016/j.matchemphys.2021.125495
      [24]
      W.J. Kong, S.Q. Yu, M. Ge, W.G. Zhang, and L.Z. Du, Pyrolysis of an organic polymeric precursor of zirconium carbide ceramics, Chin. J. Process. Eng., 19(2019), No. 3, p. 623.
      [25]
      L. Fu, B. Li, G.F. Xu, J.W. Huang, H. Engqvist, and W. Xia, Size-driven phase transformation and microstructure evolution of ZrO2 nanocrystallites associated with thermal treatments, J. Eur. Ceram. Soc., 41(2021), No. 11, p. 5624. doi: 10.1016/j.jeurceramsoc.2021.04.058
      [26]
      A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61(2000), No. 20, p. 14095. doi: 10.1103/PhysRevB.61.14095
      [27]
      A.C. Ferrari and J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Phys. Rev. B, 64(2001), No. 7, art. No. 075414. doi: 10.1103/PhysRevB.64.075414
      [28]
      R. Florez, M.L. Crespillo, X.Q. He, et al., Early stage oxidation of ZrC under 10 MeV Au3+ ion-irradiation at 800°C, Corros. Sci., 169(2020), art. No. 108609. doi: 10.1016/j.corsci.2020.108609
      [29]
      S. Naim Katea, L. Riekehr, and G. Westin, Synthesis of nano-phase ZrC by carbothermal reduction using a ZrO2–carbon nano-composite, J. Eur. Ceram. Soc., 41(2021), No. 1, p. 62. doi: 10.1016/j.jeurceramsoc.2020.03.055
      [30]
      H.M. Xiang, X.P. Lu, J.J. Li, J.X. Chen, and Y.C. Zhou, Influence of carbon on phase stability of tetragonal ZrO2, Ceram. Int., 40(2014), No. 4, p. 5645. doi: 10.1016/j.ceramint.2013.10.159
      [31]
      R.C. Garvie, The occurrence of metastable tetragonal zirconia as a crystallite size effect, J. Phys. Chem., 69(1965), No. 4, p. 1238. doi: 10.1021/j100888a024
      [32]
      N. Laidani, V. Micheli, and M. Anderle, Carbon effect on the phase structure and the hardness of RF sputtered zirconia films, Thin Solid Films, 382(2001), No. 1-2, p. 23. doi: 10.1016/S0040-6090(00)01682-5
      [33]
      L.Q. Chen, X.W. Yin, X.M. Fan, et al., Mechanical and electromagnetic shielding properties of carbon fiber reinforced silicon carbide matrix composites, Carbon, 95(2015), p. 10. doi: 10.1016/j.carbon.2015.08.011
      [34]
      X.L. Li, X.W. Yin, C.Q. Song, et al., Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1803938. doi: 10.1002/adfm.201803938
      [35]
      X. Li, M.H. Li, X.K. Lu, et al., A sheath-core shaped ZrO2–SiC/SiO2 fiber felt with continuously distributed SiC for broad-band electromagnetic absorption, Chem. Eng. J., 125(2022), art. No. 29. doi: 10.1016/j.jmst.2022.02.032
      [36]
      X. Li, G.H. Wang, Q. Li, Y.J. Wang, and X.K. Lu, Dual optimized Ti3C2Tx MXene@ZnIn2S4 heterostructure based on interface and vacancy engineering for improving electromagnetic absorption, Chem. Eng. J., 453(2023), art. No. 139488. doi: 10.1016/j.cej.2022.139488
      [37]
      X. Li, X.K. Lu, M.H. Li, et al., A SiC nanowires/Ba0.75Sr0.25Al2Si2O8 ceramic heterojunction for stable electromagnetic absorption under variable-temperature, J. Mater, Sci. Technol., 125(2022), p. 29.
      [38]
      W.M. Zhang, B. Zhao, H.M. Xiang, F.Z. Dai, S.J. Wu, and Y.C. Zhou, One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders, J. Adv. Ceram., 10(2021), No. 1, p. 62. doi: 10.1007/s40145-020-0417-2
      [39]
      X.F. Zhou, Z.R. Jia, A.L. Feng, et al., Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance, Carbon, 152(2019), p. 827. doi: 10.1016/j.carbon.2019.06.080
      [40]
      M.H. Li, X.M. Fan, H.L. Xu, et al., Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance, J. Mater. Sci. Technol., 59(2020), p. 164. doi: 10.1016/j.jmst.2020.04.048
      [41]
      X. Lu, X. Li, W. Zhu, and H. Xu, Construction of embedded heterostructures in biomass-derived carbon frameworks for enhancing electromagnetic wave absorption, Carbon, 191(2022), p. 600. doi: 10.1016/j.carbon.2022.01.050
      [42]
      X.K. Lu, D.M. Zhu, X. Li, and Y.J. Wang, Architectural design and interfacial engineering of CNTs@ZnIn2S4 heterostructure/cellulose aerogel for efficient electromagnetic wave absorption, Carbon, 197(2022), p. 209. doi: 10.1016/j.carbon.2022.06.019
      [43]
      M.H. Li, X.W. Yin, H.L. Xu, X.L. Li, L.F. Cheng, and L.T. Zhang, Interface evolution of a C/ZnO absorption agent annealed at elevated temperature for tunable electromagnetic properties, J. Am. Ceram. Soc., 102(2019), No. 9, p. 5305. doi: 10.1111/jace.16404
      [44]
      M.H. Li, W.J. Zhu, X. Li, et al., Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption, Adv. Sci., 9(2022), No. 16, art. No. e2201118. doi: 10.1002/advs.202201118
      [45]
      H.L. Xu, X.W. Yin, X.L. Li, et al., Lightweight Ti2CTx MXene/Poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature, ACS Appl. Mater. Interfaces, 11(2019), No. 10, p. 10198. doi: 10.1021/acsami.8b21671
      [46]
      Q. Li, X.W. Yin, W.Y. Duan, et al., Improved dielectric and electromagnetic interference shielding properties of ferrocene-modified polycarbosilane derived SiC/C composite ceramics, J. Eur. Ceram. Soc., 34(2014), No. 10, p. 2187. doi: 10.1016/j.jeurceramsoc.2014.02.010
      [47]
      X.M. Liu, H.L. Xu, G.Q. Liu, et al., Electromagnetic shielding performance of SiC/graphitic carbon–SiCN porous ceramic nanocomposites derived from catalyst assisted single-source-precursors, J. Eur. Ceram. Soc., 41(2021), No. 9, p. 4806. doi: 10.1016/j.jeurceramsoc.2021.03.026
      [48]
      Q.B. Wen, Z.J. Yu, X.M. Liu, et al., Mechanical properties and electromagnetic shielding performance of single-source-precursor synthesized dense monolithic SiC/HfCxN1−x/C ceramic nanocomposites, J. Mater. Chem. C, 7(2019), No. 34, p. 10683. doi: 10.1039/C9TC02369K

    Catalog


    • /

      返回文章
      返回