留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 7
Jul.  2023

图(12)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  647
  • HTML全文浏览量:  227
  • PDF下载量:  59
  • 被引次数: 0
Rongzhen Mo, Xubin Zhang, Ying Ren, Junjie Hu,  and Lifeng Zhang, Influence of substituting B2O3 with Li2O on the viscosity, structure and crystalline phase of low-reactivity mold flux, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1320-1328. https://doi.org/10.1007/s12613-023-2621-x
Cite this article as:
Rongzhen Mo, Xubin Zhang, Ying Ren, Junjie Hu,  and Lifeng Zhang, Influence of substituting B2O3 with Li2O on the viscosity, structure and crystalline phase of low-reactivity mold flux, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1320-1328. https://doi.org/10.1007/s12613-023-2621-x
引用本文 PDF XML SpringerLink
研究论文

Li2O代替B2O3对弱反应性保护渣粘度、结构和结晶相的影响

  • 通讯作者:

    任英    E-mail: yingren@ustb.edu.cn

    张立峰    E-mail: zhanglifeng@ncut.edu.cn

文章亮点

  • (1) 系统研究了Li2O代替弱反应性保护渣中的B2O3时,对保护渣性能的影响规律。
  • (2) 确定了含B2O3弱反应性保护渣中Li2O临界含量以防止高熔点结晶相LiAlO2析出恶化保护渣性能。
  • (3) Li2O和B2O3对弱反应性保护渣性能的影响具有一定的互补性和相似性,采用Li2O代替B2O3的方式综合提升保护渣各项性能具有一定可行性,但此前极少见相关研究和报道
  • 近几年来,为了降低了高铝钢连铸过程中钢中Al和渣中SiO2的反应,弱反应性保护渣的研究与应用得到了很大关注。传统弱反应性保护渣存在理化性能不佳的问题,一般可以通过添加Li2O或者B2O3等改变保护渣成分的方式来优化。但是,前人研究结果表明添加过量的Li2O或者B2O3会导致高熔点结晶相LiAlO2析出恶化保护渣理化性能或者钢渣界面反应加剧引起保护渣性能波动。因此,本文提出了在含B2O3弱反应性保护渣中添加适量Li2O代替部分B2O3,并研究了Li2O替代量对保护渣性能的影响,旨在消除单独或过量添加Li2O或B2O3对保护渣性能带来的不利影响。研究结果表明,随着保护渣中Li2O取代B2O3,保护渣粘度、转折点温度和熔点均呈现先降低后增加的趋势。当保护渣含有2wt%Li2O和6wt%B2O3时,其粘度为最小值0.07 Pa·s。同时,本文采用拉曼光谱法和X射线衍射法对弱反应性保护渣熔体结构和结晶相进行了研究,以更好地理解粘度随成分演变的规律。其结果表明,随着保护渣中Li2O含量增加,铝酸盐和硅铝酸盐网络结构聚合度增加,硅酸盐网络结构聚合度降低,表明本研究所述保护渣中添加Li2O主要起到电荷补偿的作用。此外,随着保护渣中Li2O代替B2O3含量大于2wt%,结晶相LiAlO2逐渐析出。因此,应将保护渣中Li2O含量控制不高于2wt%,以避免不利于高铝钢连铸的LiAlO2析出。
  • Research Article

    Influence of substituting B2O3 with Li2O on the viscosity, structure and crystalline phase of low-reactivity mold flux

    + Author Affiliations
    • The low-reactivity mold flux with low SiO2 content is considered suitable for the continuous casting of high-aluminum steel since it can significantly reduce the reaction between Al in steel and SiO2 in mold flux. However, the traditional low-reactivity mold flux still presents some problems such as high viscosity and strong crystallization tendency. In this study, the co-addition of Li2O and B2O3 in CaO–Al2O3–10wt%SiO2 based low-reactivity mold flux was proposed to improve properties of mold flux for high-aluminum steel, and the effect of Li2O replacing B2O3 on properties of mold flux was investigated. The viscosity of the mold flux with 2wt% Li2O and 6wt% B2O3 reached a minimum value of 0.07 Pa·s. The break temperature and melting point showed a similar trend with the viscosity. Besides, the melt structure and precipitation of the crystalline phase were studied using Raman and X-ray diffraction spectra to better understand the evolution of viscosity. It demonstrated that with increasing Li2O content in the mold flux from 0 to 6wt%, the degree of polymerization of aluminate and the aluminosilicate network structure increased because of increasing Li+ released by Li2O, indicating the added Li2O was preferentially associated with Al3+ as a charge compensator. The precipitation of LiAlO2 crystalline phase gradually increased with the replacement of B2O3 by Li2O. Therefore, Li2O content should be controlled below 2wt% to avoid LiAlO2 precipitation, which was harmful to the continuous casting of high-aluminum steels.
    • loading
    • [1]
      X.J. Fu, G.H. Wen, P. Tang, Q. Liu, and Z.Y. Zhou, Effects of CaO/Al2O3 ratio on crystallisation behaviour of CaO–Al2O3 based mould fluxes for high aluminium TRIP steel, Ironmaking Steelmaking, 41(2014), No. 5, p. 342. doi: 10.1179/1743281213Y.0000000156
      [2]
      H.X. Yu, D.X. Yang, J.M. Zhang, G.Y. Qiu, and N. Zhang, Effect of Al content on the reaction between Fe–10Mn–xAl (x = 0.035wt%, 0.5wt%, 1wt%, and 2wt%) steel and CaO–SiO2–Al2O3–MgO slag, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 256. doi: 10.1007/s12613-021-2298-y
      [3]
      Y. Chen, S.P. He, Z.R. Li, X.B. Zhang, Q.Q. Wang, and Q. Wang, Properties and structure of a new non-reactive mold flux for high-Al steel, J. Iron Steel Res. Int., 29(2022), No. 1, p. 61. doi: 10.1007/s42243-021-00708-w
      [4]
      M.S. Kim and Y.B. Kang, A reaction model to simulate composition change of mold flux during continuous casting of high Al steel, [in] R.G. Reddy, P. Chaubal, P.C. Pistorius, U. Pal, eds, Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016, Springer, Cham, 2016, p. 271.
      [5]
      M.S. Kim, M.S. Park, and Y.B. Kang, A reaction between high Mn-high Al steel and CaO–SiO2-type molten mold flux: Reduction of additive oxide components in mold flux by Al in steel, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2077. doi: 10.1007/s11663-019-01658-1
      [6]
      M.S. Kim, M.S. Park, S.E. Kang, J.K. Park, and Y.B. Kang, A reaction between high Mn–high Al steel and CaO–SiO2-type molten mold flux: Reaction mechanism change by high Al content ([pct Al]0 = 5.2) in the steel and accumulation of reaction product at the reaction interface, ISIJ Int., 58(2018), No. 4, p. 686. doi: 10.2355/isijinternational.ISIJINT-2017-603
      [7]
      M.S. Kim, S.W. Lee, J.W. Cho, M.S. Park, H.G. Lee, and Y.B. Kang, A reaction between high Mn-high Al steel and CaO–SiO2-type molten mold flux: Part I. composition evolution in molten mold flux, Metall. Mater. Trans. B, 44(2013), No. 2, p. 299. doi: 10.1007/s11663-012-9770-z
      [8]
      Y.M. Gao, S.B. Wang, C. Hong, X.J. Ma, and F. Yang, Effects of basicity and MgO content on the viscosity of the SiO2–CaO–MgO–9wt%Al2O3 slag system, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 353. doi: 10.1007/s12613-014-0916-7
      [9]
      G.H. Kim and I. Sohn, Role of B2O3 on the viscosity and structure in the CaO–Al2O3–Na2O-based system, Metall. Mater. Trans. B, 45(2014), No. 1, p. 86. doi: 10.1007/s11663-013-9953-2
      [10]
      S.P. He, Z.R. Li, Z. Chen, T. Wu, and Q. Wang, Review of mold fluxes for continuous casting of high-alloy (Al, Mn, Ti) steels, Steel Res. Int., 90(2019), No. 1, art. No. 1800424. doi: 10.1002/srin.201800424
      [11]
      S. Street, K. James, N. Minor, A. Roelant, and J. Tremp, Production of high-aluminum steel slabs, Iron Steel Technol., 5(2008), No. 7, p. 38.
      [12]
      C.X. Ji, Y. Cui, Z. Zeng, Z.H. Tian, C.L. Zhao, and G.S. Zhu, Continuous casting of high-Al steel in Shougang Jingtang steel works, J. Iron Steel Res. Int., 22(2015), No. 1, p. 53.
      [13]
      H. Wang, Study on Crystallization Behaviors and Heat Transfer of High Al Steel Mould Fluxes [Dissertation], Chongqing university, Chongqing, 2010.
      [14]
      H. Wang, P. Tang, G.H. Wen, and X. Yu, Effect of Na2O on crystallisation behaviour and heat transfer of high Al steel mould fluxes, Ironmaking Steelmaking, 38(2011), No. 5, p. 369. doi: 10.1179/1743281211Y.0000000011
      [15]
      T. Wu, S.P. He, L.L. Zhu, and Q. Wang, Study on reaction performances and applications of mold flux for high-aluminum steel, Mater. Trans., 57(2016), No. 1, p. 58. doi: 10.2320/matertrans.M2015311
      [16]
      K. Blazek, H.B. Yin, G. Skoczylas, M. McClymonds, and M. Frazee, Development and evaluation of lime alumina-based mold powders for casting high-aluminum TRIP steel grades, [in] AISTech, Iron and Steel Technology Conference and Exhibition, 2011, p. 1577.
      [17]
      J.M. Li, M.F. Jiang, and L.F. Sun, Development of low responsiveness mold fluxes for 20Mn23AlV, China Metall., 27(2017), No. 12, p. 28.
      [18]
      H.M. Wang, T.W. Zhang, H. Zhu, G.R. Li, Y.Q. Yan, and J.H. Wang, Effect of B2O3 on melting temperature, viscosity and desulfurization capacity of CaO-based refining flux, ISIJ Int., 51(2011), No. 5, p. 702. doi: 10.2355/isijinternational.51.702
      [19]
      J.L. Li, B.W. Kong, B. Galdino, et al., Investigation on properties of fluorine-free mold fluxes based on CaO–Al2O3–B2O3 system, Steel Res. Int., 88(2017), No. 9, art. No. 1600485. doi: 10.1002/srin.201600485
      [20]
      W. Yan, W.Q. Chen, Y.D. Yang, and A. McLean, Viscous characteristics and modelling of CaO–Al2O3–based mould flux with B2O3 as a substitute for CaF2, Ironmaking Steelmaking, 46(2019), No. 4, p. 347. doi: 10.1080/03019233.2017.1394033
      [21]
      W. Yan, W. Chen, Y. Yang, C. Lippold, and A. McLean, Evaluation of B2O3 as replacement for CaF2 in CaO–Al2O3 based mould flux, Ironmaking Steelmaking, 43(2016), No. 4, p. 316. doi: 10.1179/1743281215Y.0000000062
      [22]
      X. Yu, G.H. Wen, P. Tang, and H. Wang, Effect of B2O3 on the physico-chemical properties of mold slag used for high-Al steel, J. Chongqing Univ., 34(2011), No. 1, p. 66.
      [23]
      X.H. Huang, J.L. Liao, K. Zheng, H.H. Hu, F.M. Wang, and Z.T. Zhang, Effect of B2O3 addition on viscosity of mould slag containing low silica content, Ironmaking Steelmaking, 41(2014), No. 1, p. 67. doi: 10.1179/1743281213Y.0000000107
      [24]
      G.H. Kim and I. Sohn, Influence of Li2O on the viscous behavior of CaO–Al2O3–12 mass% Na2O–12 mass% CaF2 based slags, ISIJ Int., 52(2012), No. 1, p. 68. doi: 10.2355/isijinternational.52.68
      [25]
      T. Wu, Q. Wang, S.P. He, J.F. Xu, X. Long, and Y.J. Lu, Study on properties of alumina-based mould fluxes for high-Al steel slab casting, Steel Res. Int., 83(2012), No. 12, p. 1194. doi: 10.1002/srin.201200092
      [26]
      J.L. Li, B.W. Kong, X.Y. Gao, Q.C. Liu, Q.F. Shu, and K. Chou, Investigation the influences of B2O3 and R2O on the structure and crystallization behaviors of CaO–Al2O3 based F-free mold flux, Metall. Res. Technol., 115(2018), No. 3, art. No. 304. doi: 10.1051/metal/2017096
      [27]
      J. Qi, C. Liu, and M. Jiang, Role of Li2O on the structure and viscosity in CaO–Al2O3–Li2O–Ce2O3 melts, J. Non Cryst. Solids, 475(2017), p. 101. doi: 10.1016/j.jnoncrysol.2017.09.014
      [28]
      L.J. Zhou, H. Li, W.L. Wang, D. Xiao, L. Zhang, and J. Yu, Effect of Li2O on the behavior of melting, crystallization, and structure for CaO–Al2O3-based mold fluxes, Metall. Mater. Trans. B, 49(2018), No. 5, p. 2232. doi: 10.1007/s11663-018-1327-3
      [29]
      B.X. Lu, K. Chen, W.L. Wang, and B.B. Jiang, Effects of Li2O and Na2O on the crystallization behavior of lime–alumina-based mold flux for casting high-Al steels, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1496. doi: 10.1007/s11663-014-0063-6
      [30]
      J. Qi, C.J. Liu, C.L. Li, and M.F. Jiang, Viscous properties of new mould flux based on aluminate system with CeO2 for continuous casting of RE alloyed heat resistant steel, J. Rare Earths, 34(2016), No. 3, p. 328. doi: 10.1016/S1002-0721(16)60032-7
      [31]
      J. Yang, H. Cui, J. Zhang, O. Ostrovski, C. Zhang, and D. Cai, Effect of Na2O on the interfacial reaction between CaO–Al2O3 based mold fluxes and high-Al steel at 1500°C, ISIJ Int., 59(2019), No. 12, p. 2247. doi: 10.2355/isijinternational.ISIJINT-2019-257
      [32]
      S. Seftharaman, S.C. Du, S. Sridhar, and K.C. Mills, Estimation of liquidus temperatures for multicomponent silicates from activation energies for viscous flow, Metall. Mater. Trans. B, 31(2000), No. 1, p. 111. doi: 10.1007/s11663-000-0136-6
      [33]
      J.Y. Chen, W.L. Wang, L.J. Zhou, and Z.H. Pan, Effect of Al2O3 and MgO on crystallization and structure of CaO–SiO2–B2O3-based fluorine-free mold flux, J. Iron Steel Res. Int., 28(2021), No. 5, p. 552. doi: 10.1007/s42243-020-00439-4
      [34]
      J.T. Ju, K.S. Yang, Z.H. Zhu, Y. Gu, and L.Z. Chang, Effect of CaF2 and CaO/Al2O3 on viscosity and structure of TiO2-bearing slag for electroslag remelting, J. Iron Steel Res. Int., 28(2021), No. 12, p. 1541. doi: 10.1007/s42243-021-00683-2
      [35]
      F. Yuan, Z. Zhao, Y.L. Zhang, and T. Wu, Influence of Cr2O3 content on viscosity and rheological behavior of Cr2O3-containing slags, J. Iron Steel Res. Int., 29(2022), No. 4, p. 601. doi: 10.1007/s42243-021-00679-y
      [36]
      D.L. Zheng, G.J. Ma, X. Zhang, M.K. Liu, and J. Xu, Effect of CaO/Al2O3 on structure, viscosity, and surface tension of electroslag remelting-type CeO2-bearing slag, J. Iron Steel Res. Int., (2022), p. 1.
      [37]
      L.J. Zhou, H. Luo, W.L. Wang, X. Yan, and H.F. Wu, Effect of Al2O3/Na2O ratio and MnO on high-temperature properties of mold flux for casting peritectic steel, J. Iron Steel Res. Int., 29(2022), No. 1, p. 53. doi: 10.1007/s42243-021-00712-0
      [38]
      F. Yuan, Z. Zhao, Y.L. Zhang, and T. Wu, Effect of Al2O3 content on the viscosity and structure of CaO–SiO2–Cr2O3–Al2O3 slags, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1522. doi: 10.1007/s12613-021-2306-2
      [39]
      C.Y. Xu, C. Wang, R.Z. Xu, J.L. Zhang, and K.X. Jiao, Effect of Al2O3 on the viscosity of CaO–SiO2–Al2O3–MgO–Cr2O3 slags, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 797. doi: 10.1007/s12613-020-2187-9
      [40]
      B.T. Poe, P.F. McMillan, B. Coté, D. Massiot, and J.P. Coutures, Structure and dynamics in calcium aluminate liquids: High-temperature 27Al NMR and Raman spectroscopy, J. Am. Ceram. Soc., 77(1994), No. 7, p. 1832. doi: 10.1111/j.1151-2916.1994.tb07058.x
      [41]
      P.F. McMillan, W.T. Petuskey, B. Coté, D. Massiot, C. Landron, and J.P. Coutures, A structural investigation of CaO–Al2O3 glasses via 27Al MAS-NMR, J. Non Cryst. Solids, 195(1996), No. 3, p. 261. doi: 10.1016/0022-3093(95)00536-6
      [42]
      D.R. Neuville, L. Cormier, and D. Massiot, Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy, Chem. Geol., 229(2006), No. 1-3, p. 173. doi: 10.1016/j.chemgeo.2006.01.019
      [43]
      V.P. Klyuev and B.Z. Pevzner, The influence of aluminum oxide on the thermal expansion, glass transition temperature, and viscosity of lithium and sodium aluminoborate glasses, Glass Phys. Chem., 28(2002), No. 4, p. 207. doi: 10.1023/A:1019954010719
      [44]
      V.P. Klyuev and B. Pevzner, Structural interpretation of the glass transition temperature and thermal expansion of glasses in the system BaO–Al2O3–B2O3, Phys. Chem. Glasses, 41(2000), p. 380.
      [45]
      J. Qi, C.J. Liu, and M.F. Jiang, Viscosity–structure–crystallization of the Ce2O3-bearing calcium-aluminate-based melts with different contents of B2O3, ISIJ Int., 58(2018), No. 1, p. 186. doi: 10.2355/isijinternational.ISIJINT-2017-252
      [46]
      G. Padmaja and P. Kistaiah, Infrared and Raman spectroscopic studies on alkali borate glasses: Evidence of mixed alkali effect, J. Phys. Chem. A, 113(2009), No. 11, p. 2397. doi: 10.1021/jp809318e
      [47]
      J.H. Park, D.J. Min, and H.S. Song, Structural investigation of CaO–Al2O3 and CaO–Al2O3–CaF2 slags via Fourier transform infrared spectra, ISIJ Int., 42(2002), No. 1, p. 38. doi: 10.2355/isijinternational.42.38
      [48]
      N. Ma, J.L. You, L.M. Lu, J. Wang, M. Wang, and S.M. Wan, Micro-structure studies of the molten binary K3AlF6–Al2O3 system by in situ high temperature Raman spectroscopy and theoretical simulation, Inorg. Chem. Front., 5(2018), No. 8, p. 1861. doi: 10.1039/C8QI00226F
      [49]
      J. Yang, J.Q. Zhang, O. Ostrovski, C. Zhang, and D.X. Cai, Effects of fluorine on solidification, viscosity, structure, and heat transfer of CaO–Al2O3-based mold fluxes, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1766. doi: 10.1007/s11663-019-01579-z
      [50]
      P. McMillan and B. Piriou, Raman spectroscopy of calcium aluminate glasses and crystals, J. Non Cryst. Solids, 55(1983), No. 2, p. 221. doi: 10.1016/0022-3093(83)90672-5
      [51]
      T.S. Kim and J.H. Park, Structure–viscosity relationship of low-silica calcium aluminosilicate melts, ISIJ Int., 54(2014), No. 9, p. 2031. doi: 10.2355/isijinternational.54.2031
      [52]
      H. Li, P. Hrma, J.D. Vienna, M.X. Qian, Y.L. Su, and D.E. Smith, Effects of Al2O3, B2O3, Na2O, and SiO2 on nepheline formation in borosilicate glasses: Chemical and physical correlations, J. Non Cryst. Solids, 331(2003), No. 1-3, p. 202. doi: 10.1016/j.jnoncrysol.2003.08.082
      [53]
      E.Z. Gao, W.L. Wang , and L. Zhang, Effect of alkaline earth metal oxides on the viscosity and structure of the CaO–Al2O3 based mold flux for casting high-al steels, J. Non Cryst. Solids, 473(2017), p. 79. doi: 10.1016/j.jnoncrysol.2017.07.029
      [54]
      J.X. Gao, G.H. Wen, T. Huang, B.W. Bai, P. Tang, and Q. Liu, Effect of Al speciation on the structure of high-Al steels mold fluxes containing fluoride, J. Am. Ceram. Soc., 99(2016), No. 12, p. 3941. doi: 10.1111/jace.14444
      [55]
      G.H. Kim and I. Sohn, Effect of Al2O3 on the viscosity and structure of calcium silicate-based melts containing Na2O and CaF2, J. Non Cryst. Solids, 358(2012), No. 12-13, p. 1530. doi: 10.1016/j.jnoncrysol.2012.04.009
      [56]
      R. El Hayek, F. Ferey, P. Florian, A. Pisch, and D.R. Neuville, Structure and properties of lime alumino-borate glasses, Chem. Geol., 461(2017), p. 75. doi: 10.1016/j.chemgeo.2016.11.025
      [57]
      L.S. Du and J.F. Stebbins, Site connectivities in sodium aluminoborate glasses: Multinuclear and multiple quantum NMR results, Solid State Nucl. Magn. Reson., 27(2005), No. 1-2, p. 37. doi: 10.1016/j.ssnmr.2004.08.003
      [58]
      D.R. Neuville, G.S. Henderson, L. Cormier, and D. Massiot, The structure of crystals, glasses, and melts along the CaO–Al2O3 join: Results from Raman, Al L- and K-edge X-ray absorption, and 27Al NMR spectroscopy, Am. Mineral., 95(2010), No. 10, p. 1580. doi: 10.2138/am.2010.3465
      [59]
      P. McMillan, Structural studies of silicate glasses and melts—Applications and limitations of Raman spectroscopy, Am. Mineral., 69(1984), No. 7-8, p. 622.
      [60]
      B.O. Mysen and D. Virgo, Structure and properties of fluorine-bearing aluminosilicate melts: The system Na2O–Al2O3–SiO2–F at 1 atm, Contr. Mineral. Petrol., 91(1985), No. 3, p. 205. doi: 10.1007/BF00413348
      [61]
      J.Y. Park, G.H. Kim, J.B. Kim, S. Park, and I. Sohn, Thermo-physical properties of B2O3-containing mold flux for high carbon steels in thin slab continuous casters: Structure, viscosity, crystallization, and wettability, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2582. doi: 10.1007/s11663-016-0720-z
      [62]
      B.P. Dwivedi and B.N. Khanna, Cation dependence of Raman scattering in alkali borate glasses, J. Phys. Chem. Solids, 56(1995), No. 1, p. 39. doi: 10.1016/0022-3697(94)00130-8
      [63]
      H. Li, Y.L. Su, L.Y. Li, and D.M. Strachan, Raman spectroscopic study of gadolinium(III) in sodium-aluminoborosilicate glasses, J. Non Cryst. Solids, 292(2001), No. 1-3, p. 167. doi: 10.1016/S0022-3093(01)00878-X
      [64]
      E.I. Kamitsos, M.A. Karakassides, and G.D. Chryssikos, Vibrational spectra of magnesium–sodium–borate glasses. 2. Raman and mid-infrared investigation of the network structure, J. Phys. Chem., 91(1987), No. 5, p. 1073. doi: 10.1021/j100289a014
      [65]
      Y. Kim and K. Morita, Relationship between molten oxide structure and thermal conductivity in the CaO–SiO2–B2O3 system, ISIJ Int., 54(2014), No. 9, p. 2077. doi: 10.2355/isijinternational.54.2077
      [66]
      X.D. Xing, Z.G. Pang, C. Mo, S. Wang, and J.T. Ju, Effect of MgO and BaO on viscosity and structure of blast furnace slag, J. Non Cryst. Solids, 530(2020), art. No. 119801. doi: 10.1016/j.jnoncrysol.2019.119801
      [67]
      L. Zhang, W.L. Wang, S.L. Xie, K.X. Zhang, and I. Sohn, Effect of basicity and B2O3 on the viscosity and structure of fluorine-free mold flux, J. Non Cryst. Solids, 460(2017), p. 113. doi: 10.1016/j.jnoncrysol.2017.01.031
      [68]
      D. Xiao, W.L. Wang, and B.X. Lu, Effects of B2O3 and BaO on the crystallization behavior of CaO–Al2O3-based mold flux for casting high-Al steels, Metall. Mater. Trans. B, 46(2015), No. 2, p. 873. doi: 10.1007/s11663-014-0286-6
      [69]
      W. Yan, W. Chen, Y. Yang, C. Lippold, and A. McLean, Effect of CaO/Al2O3 ratio on viscosity and crystallisation behaviour of mould flux for high Al non-magnetic steel, Ironmaking Steelmaking, 42(2015), No. 9, p. 698. doi: 10.1179/1743281215Y.0000000024
      [70]
      Q. Wang, J. Yang, C. Zhang, D.X. Cai, J.Q. Zhang, and O. Ostrovski, Effect of CaO/Al2O3 ratio on viscosity and structure of CaO–Al2O3-based fluoride-free mould fluxes, J. Iron Steel Res. Int., 26(2019), No. 4, p. 374.

    Catalog


    • /

      返回文章
      返回