留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  768
  • HTML全文浏览量:  300
  • PDF下载量:  93
  • 被引次数: 0
Zhibin Chen, Kang Huang, Bowei Zhang, Jiuyang Xia, Junsheng Wu, Zequn Zhang,  and Yizhong Huang, Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1922-1932. https://doi.org/10.1007/s12613-023-2624-7
Cite this article as:
Zhibin Chen, Kang Huang, Bowei Zhang, Jiuyang Xia, Junsheng Wu, Zequn Zhang,  and Yizhong Huang, Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1922-1932. https://doi.org/10.1007/s12613-023-2624-7
引用本文 PDF XML SpringerLink
研究论文

AlCoCrFeNi高熵合金的腐蚀工程制备高效电催化剂用于碱性海水析氧



  • 通讯作者:

    张博威    E-mail: bwzhang@ustb.edu.cn

    吴俊升    E-mail: wujs@ustb.edu.cn

    黄一中    E-mail: YZHuang@ntu.edu.sg

文章亮点

  • (1) 系统地研究了水热对AlCoCrFeNi高熵合金表面AlCoCrFeNi-LDHs的影响规律
  • (2) 开发了电催化性能优异的AlCoCrFeNi-LDHs修饰的AlCoCrFeNi高熵合金,并研究了AlCoCrFeNi-LDHs在电催化裂解碱性海水的影响
  • (3) 总结并提出了AlCoCrFeNi-LDHs修饰的AlCoCrFeNi高熵合金电极失效机理
  • 海水裂解是产生可再生和可持续氢能的一种前瞻性方法。目前,复杂的制备工艺和较差的可重复性被认为是阻碍大规模生产和应用电催化剂的不可逾越的障碍。腐蚀工程可避免使用复杂的仪器,是一种降低成本的有趣策略,并为具有催化性能的电极提供了巨大的潜力。本文通过一步腐蚀的方法,提出了一种在AlCoCrFeNi高熵合金上均匀装饰的由五元AlCoCrFeNi层状双氢氧化物(AlCoCrFeNi-LDHs)组成的阳极,该阳极可直接用作促进碱性海水中析氧反应(OER)的活性催化剂。系统地研究出合适的工艺参数:温度150°C,3 M NaOH水热溶液,水热8 h。该条件下制备的AlCoCrFeNi-LDHs中Ni与Al为主要构成元素。电化学测试结果表明,在碱性海水(0.5 M NaCl + 1 M KOH)介质中,AlCoCrFeNi-LDHs达到10和100 mA·cm−2的电流密度时仅分别需要272.3与343.4 mV的过电位,相比于AlCoCrFeNi高熵合金(349.8与455.4 mV),过电位分别降低了77.5与112 mV。同时,AlCoCrFeNi-LDHs具有较低的Tafel斜率(48.87 mV·dec−1)、相对较大的电化学活性表面积、较好的电荷转移动力学,并且在10 h的稳定性测试中展现出优异的稳定性。研究发现,AlCoCrFeNi-LDHs表面生长的LDHs在工作72 h后仍保持片状结构,过程中没有新物质生成,稳定性测试前后各元素的化学状态没有产生较大改变,然而,在电流的持续作用下,构成高效活性位点的元素发生溶解,因此导致LDHs的粗糙表面,其电催化性能衰退。
  • Research Article

    Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater

    + Author Affiliations
    • Seawater splitting is a prospective approach to yield renewable and sustainable hydrogen energy. Complex preparation processes and poor repeatability are currently considered to be an insuperable impediment to the promotion of the large-scale production and application of electrocatalysts. Avoiding the use of intricate instruments, corrosion engineering is an intriguing strategy to reduce the cost and presents considerable potential for electrodes with catalytic performance. An anode comprising quinary AlCoCrFeNi layered double hydroxides uniformly decorated on an AlCoCrFeNi high-entropy alloy is proposed in this paper via a one-step corrosion engineering method, which directly serves as a remarkably active catalyst for boosting the oxygen evolution reaction (OER) in alkaline seawater. Notably, the best-performing catalyst exhibited oxygen evolution reaction activity with overpotential values of 272.3 and 332 mV to achieve the current densities of 10 and 100 mA·cm−2, respectively. The failure mechanism of the obtained catalyst was identified for advancing the development of multicomponent catalysts.
    • loading
    • Supplementary Information-10.1007s12613-023-2624-7.docx
    • [1]
      F. Yu, H.Q. Zhou, Y.F. Huang, et al., High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting, Nat. Commun., 9(2018), No. 1, art. No. 2551. doi: 10.1038/s41467-018-04746-z
      [2]
      K. Rennings, B. Brohmann, J. Nentwich, J. Schleich, T. Traber, and R. Wüstenhagen, Sustainable Energy Consumption in Residential Buildings, Springer Science, Berlin, 2012.
      [3]
      J.O. Abe, A.P.I. Popoola, E. Ajenifuja, and O.M. Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrogen Energy, 44(2019), No. 29, p. 15072. doi: 10.1016/j.ijhydene.2019.04.068
      [4]
      C.J. Winter, Hydrogen energy—Abundant, efficient, clean: A debate over the energy-system-of-change, Int. J. Hydrogen Energy, 34(2009), No. 14, p. S1. doi: 10.1016/j.ijhydene.2009.05.063
      [5]
      Z.P. Wu, X.F. Lu, S.Q. Zang, and X. Lou, Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction, Adv. Funct. Mater., 30(2020), No. 15, art. No. 1910274. doi: 10.1002/adfm.201910274
      [6]
      M.Y. Wang, Z. Wang, X.Z. Gong, and Z.C. Guo, The intensification technologies to water electrolysis for hydrogen production-A review, Renewable Sustainable Energy Rev., 29(2014), p. 573. doi: 10.1016/j.rser.2013.08.090
      [7]
      S. Dresp, F. Dionigi, M. Klingenhof, and P. Strasser, Direct electrolytic splitting of seawater: Opportunities and challenges, ACS Energy Lett., 4(2019), No. 4, p. 933. doi: 10.1021/acsenergylett.9b00220
      [8]
      S.C. Ke, R. Chen, G.H. Chen, and X.L. Ma, Mini review on electrocatalyst design for seawater splitting: Recent progress and perspectives, Energy Fuels, 35(2021), No. 16, p. 12948. doi: 10.1021/acs.energyfuels.1c02056
      [9]
      L. Yu, Q. Zhu, S.W. Song, et al., Non-noble metal–nitride based electrocatalysts for high-performance alkaline seawater electrolysis, Nat. Commun., 10(2019), No. 1, art. No. 5106. doi: 10.1038/s41467-019-13092-7
      [10]
      F. Song, L.C. Bai, A. Moysiadou, et al., Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance, J. Am. Chem. Soc., 140(2018), No. 25, p. 7748. doi: 10.1021/jacs.8b04546
      [11]
      W.M. Tong, M. Forster, F. Dionigi, et al., Electrolysis of low-grade and saline surface water, Nat. Energy, 5(2020), No. 5, p. 367. doi: 10.1038/s41560-020-0550-8
      [12]
      T. Okada, H. Abe, A. Murakami, et al., A bilayer structure composed of Mg|Co–MnO2 deposited on a Co(OH)2 film to realize selective oxygen evolution from chloride-containing water, Langmuir, 36(2020), No. 19, p. 5227. doi: 10.1021/acs.langmuir.0c00547
      [13]
      S. Gupta, M. Forster, A. Yadav, A.J. Cowan, N. Patel, and M. Patel, Highly efficient and selective metal oxy-boride electrocatalysts for oxygen evolution from alkali and saline solutions, ACS Appl. Energy Mater., 3(2020), No. 8, p. 7619. doi: 10.1021/acsaem.0c01040
      [14]
      F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, and P. Strasser, Design criteria, operating conditions, and nickel–iron hydroxide catalyst materials for selective seawater electrolysis, ChemSusChem, 9(2016), No. 9, p. 962. doi: 10.1002/cssc.201501581
      [15]
      G.B. Liu, Y.S. Xu, T. Yang, and L.H. Jiang, Recent advances in electrocatalysts for seawater splitting, Nano Mater. Sci., 5(2023), No. 1, p. 101. doi: 10.1016/j.nanoms.2020.12.003
      [16]
      J.E. Bennett, Electrodes for generation of hydrogen and oxygen from seawater, Int. J. Hydrogen Energy, 5(1980), No. 4, p. 401. doi: 10.1016/0360-3199(80)90021-X
      [17]
      J. Geng, L. Kuai, E.J. Kan, Q. Wang, and B.Y. Geng, Precious-metal-free Co–Fe–O/rGO synergetic electrocatalysts for oxygen evolution reaction by a facile hydrothermal route, ChemSusChem, 8(2015), No. 4, p. 659. doi: 10.1002/cssc.201403222
      [18]
      Y. Zhou, S.Q. Xi, X.G. Yang, and H.J. Wu, In situ hydrothermal growth of metallic Co9S8–Ni3S2 nanoarrays on nickel foam as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions, J. Solid State Chem., 270(2019), p. 398. doi: 10.1016/j.jssc.2018.12.004
      [19]
      Z.J. Du, D.H. Xiong, S.K. Verma, et al., A low temperature hydrothermal synthesis of delafossite CuCoO2 as an efficient electrocatalyst for the oxygen evolution reaction in alkaline solutions, Inorg. Chem. Front., 5(2018), No. 1, p. 183. doi: 10.1039/C7QI00621G
      [20]
      J.Z. Huang, J.C. Han, R. Wang, et al., Improving electrocatalysts for oxygen evolution using NixFe3–xO4/Ni hybrid nanostructures formed by solvothermal synthesis, ACS Energy Lett., 3(2018), No. 7, p. 1698. doi: 10.1021/acsenergylett.8b00888
      [21]
      D.H. Youn, Y.B. Park, J.Y. Kim, G. Magesh, Y.J. Jang, and J.S. Lee, One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation, J. Power Sources, 294(2015), p. 437. doi: 10.1016/j.jpowsour.2015.06.098
      [22]
      W.X. Zhu, T.S. Zhang, Y. Zhang, et al., A practical-oriented NiFe-based water-oxidation catalyst enabled by ambient redox and hydrolysis co-precipitation strategy, Appl. Catal. B, 244(2019), p. 844. doi: 10.1016/j.apcatb.2018.12.021
      [23]
      S.M. Saha and A.K. Ganguli, FeCoNi alloy as noble metal-free electrocatalyst for oxygen evolution reaction (OER), ChemistrySelect, 2(2017), No. 4, p. 1630. doi: 10.1002/slct.201601243
      [24]
      T.T. Liu, Y.H. Liang, Q. Liu, X.P. Sun, Y.Q. He, and A.M. Asiri, Electrodeposition of cobalt–sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction, Electrochem. Commun., 60(2015), p. 92. doi: 10.1016/j.elecom.2015.08.011
      [25]
      Q. Liu, S. Gu, and C.M. Li, Electrodeposition of nickel–phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water, J. Power Sources, 299(2015), p. 342. doi: 10.1016/j.jpowsour.2015.09.027
      [26]
      T. Wang, W.C. Xu, and H.X. Wang, Ternary NiCoFe layered double hydroxide nanosheets synthesized by cation exchange reaction for oxygen evolution reaction, Electrochim. Acta, 257(2017), p. 118. doi: 10.1016/j.electacta.2017.10.074
      [27]
      X.T. Feng, Q.Z. Jiao, H.R. Cui, et al., One-pot synthesis of NiCo2S4 hollow spheres via sequential ion-exchange as an enhanced oxygen bifunctional electrocatalyst in alkaline solution, ACS Appl. Mater. Interfaces, 10(2018), No. 35, p. 29521. doi: 10.1021/acsami.8b08547
      [28]
      J.Y. Xia, K. Huang, Z.X. Yao, et al., Ternary duplex FeCoNi alloy prepared by cathode plasma electrolytic deposition as a high-efficient electrocatalyst for oxygen evolution reaction, J. Alloys Compd., 891(2022), art. No. 161934. doi: 10.1016/j.jallcom.2021.161934
      [29]
      F. Wu, Z.X. Yao, K. Huang, et al., Boosting OER activity of stainless steel by cathodic plasma surface modification, J. Mater. Res. Technol., 15(2021), p. 6721. doi: 10.1016/j.jmrt.2021.11.098
      [30]
      X.P. Liu, M.X. Gong, S. Deng, et al., Transforming damage into benefit: Corrosion engineering enabled electrocatalysts for water splitting, Adv. Funct. Mater., 31(2021), No. 11, art. No. 2009032. doi: 10.1002/adfm.202009032
      [31]
      H.A. Yang, L.Q. Gong, H.M. Wang, et al., Preparation of nickel–iron hydroxides by microorganism corrosion for efficient oxygen evolution, Nat. Commun., 11(2020), No. 1, art. No. 5075. doi: 10.1038/s41467-020-18891-x
      [32]
      H. Schäfer, D.M. Chevrier, P. Zhang, et al., Electro-oxidation of Ni42 steel: A highly active bifunctional electrocatalyst, Adv. Funct. Mater., 26(2016), No. 35, p. 6402. doi: 10.1002/adfm.201601581
      [33]
      Q. Wang, Y.L. Jia, M.P. Wang, et al., Synthesis of Cu2O nanotubes with efficient photocatalytic activity by electrochemical corrosion method, J. Phys. Chem. C, 119(2015), No. 38, p. 22066. doi: 10.1021/acs.jpcc.5b06213
      [34]
      B. Fei, Z.L. Chen, J.X. Liu, et al., Ultrathinning nickel sulfide with modulated electron density for efficient water splitting, Adv. Energy Mater., 10(2020), No. 41, art. No. 2001963. doi: 10.1002/aenm.202001963
      [35]
      N. Todoroki and T. Wadayama, Heterolayered Ni–Fe hydroxide/oxide nanostructures generated on a stainless-steel substrate for efficient alkaline water splitting, ACS Appl. Mater. Interfaces, 11(2019), No. 47, p. 44161. doi: 10.1021/acsami.9b14213
      [36]
      H. Schäfer, S. Sadaf, L. Walder, et al., Stainless steel made to rust: A robust water-splitting catalyst with benchmark characteristics, Energy Environ. Sci., 8(2015), No. 9, p. 2685. doi: 10.1039/C5EE01601K
      [37]
      X. Shang, Z.Z. Liu, J.Q. Zhang, et al., Electrochemical corrosion engineering for Ni–Fe oxides with superior activity toward water oxidation, ACS Appl. Mater. Interfaces, 10(2018), No. 49, p. 42217. doi: 10.1021/acsami.8b13267
      [38]
      J. Lee, G.H. Lim, and B. Lim, Nanostructuring of metal surfaces by corrosion for efficient water splitting, Chem. Phys. Lett., 644(2016), p. 51. doi: 10.1016/j.cplett.2015.11.043
      [39]
      X.F. Ren, Y.R. Wang, A.M. Liu, Z.H. Zhang, Q.Y. Lv, and B.H. Liu, Current progress and performance improvement of Pt/C catalysts for fuel cells, J. Mater. Chem. A, 8(2020), No. 46, p. 24284. doi: 10.1039/D0TA08312G
      [40]
      Y. Yan, B.Y. Xia, B. Zhao, and X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting, J. Mater. Chem. A, 4(2016), No. 45, p. 17587. doi: 10.1039/C6TA08075H
      [41]
      S.M. Han, Q.B. Yun, S.Y. Tu, L.J. Zhu, W.B. Cao, and Q.P. Lu, Metallic ruthenium-based nanomaterials for electrocatalytic and photocatalytic hydrogen evolution, J. Mater. Chem. A, 7(2019), No. 43, p. 24691. doi: 10.1039/C9TA06178A
      [42]
      H.M. Xu, S.Q. Ci, Y.C. Ding, G.X. Wang, and Z.H. Wen, Recent advances in precious metal-free bifunctional catalysts for electrochemical conversion systems, J. Mater. Chem. A, 7(2019), No. 14, p. 8006. doi: 10.1039/C9TA00833K
      [43]
      W.S. Yan, J.T. Zhang, A.J. Lü, S.L. Lu, Y. Zhong, and M.Y. Wang, Self-supporting and hierarchically porous NixFe–S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting, Int. J. Miner. Metall. Mater., 29(2022), p. 1120. doi: 10.1007/s12613-022-2443-2
      [44]
      Y.N. Guo, T. Park, J.W. Yi, et al., Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting, Adv. Mater., 31(2019), No. 17, art. No. 1807134. doi: 10.1002/adma.201807134
      [45]
      Q.B. Yun, L.X. Li, Z.N. Hu, Q. Lu, B. Chen, and H. Zhang, Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage, Adv. Mater., 32(2020), No. 1, art. No. 1903826. doi: 10.1002/adma.201903826
      [46]
      H.J. Zhang, A.W. Maijenburg, X.P. Li, S.L. Schweizer, and R.B. Wehrspohn, Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting, Adv. Funct. Mater., 30(2020), No. 34, art. No. 2003261. doi: 10.1002/adfm.202003261
      [47]
      L.H. Liu, N. Li, J.R. Han, K.L. Yao, and H.Y. Liang, Multicomponent transition metal phosphide for oxygen evolution, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 503. doi: 10.1007/s12613-021-2352-9
      [48]
      X. Peng, C.R. Pi, X.M. Zhang, S. Li, K.F. Huo, and P.K. Chu, Recent progress of transition metal nitrides for efficient electrocatalytic water splitting, Sustainable Energy Fuels, 3(2019), No. 2, p. 366. doi: 10.1039/C8SE00525G
      [49]
      W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, J. Suntivich, and Y. Shao-Horn, Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis, Energy Environ. Sci., 8(2015), No. 5, p. 1404. doi: 10.1039/C4EE03869J
      [50]
      M.S. Burke, L.J. Enman, A.S. Batchellor, S.H. Zou, and S.W. Boettcher, Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles, Chem. Mater., 27(2015), No. 22, p. 7549. doi: 10.1021/acs.chemmater.5b03148
      [51]
      K.X. Zhang and R.Q. Zou, Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges, Small, 17(2021), No. 37, art. No. 2100129. doi: 10.1002/smll.202100129
      [52]
      H. Xu, H.Y. Shang, C. Wang, and Y.K. Du, Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting, Coord. Chem. Rev., 418(2020), art. No. 213374. doi: 10.1016/j.ccr.2020.213374
      [53]
      J.A. Wang, Y. Gao, H. Kong, et al., Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances, Chem. Soc. Rev., 49(2020), No. 24, p. 9154. doi: 10.1039/D0CS00575D
      [54]
      G.L. Fan, F. Li, D.G. Evans, and X. Duan, Catalytic applications of layered double hydroxides: Recent advances and perspectives, Chem. Soc. Rev., 43(2014), No. 20, p. 7040. doi: 10.1039/C4CS00160E
      [55]
      M. Xu and M. Wei, Layered double hydroxide-based catalysts: Recent advances in preparation, structure, and applications, Adv. Funct. Mater., 28(2018), No. 47, art. No. 1802943. doi: 10.1002/adfm.201802943
      [56]
      Z.P. Xu, J. Zhang, M.O. Adebajo, H. Zhang, and C.H. Zhou, Catalytic applications of layered double hydroxides and derivatives, Appl. Clay Sci., 53(2011), No. 2, p. 139. doi: 10.1016/j.clay.2011.02.007
      [57]
      S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, and S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review, ACS Catal., 6(2016), No. 12, p. 8069. doi: 10.1021/acscatal.6b02479
      [58]
      M. Görlin, P. Chernev, J.F. de Araújo, et al., Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts, J. Am. Chem. Soc., 138(2016), No. 17, p. 5603. doi: 10.1021/jacs.6b00332
      [59]
      P. Babar, A. Lokhande, V. Karade, et al., Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis, ACS Sustainable Chem. Eng., 7(2019), No. 11, p. 10035. doi: 10.1021/acssuschemeng.9b01260
      [60]
      D.M. Jang, I.H. Kwak, E.L. Kwon, et al., Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution, J. Phys. Chem. C, 119(2015), No. 4, p. 1921. doi: 10.1021/jp511561k
      [61]
      Y.Q. Zhang, D.D. Wang, and S.Y. Wang, High-entropy alloys for electrocatalysis: Design, characterization, and applications, Small, 18(2022), No. 7, art. No. 2104339. doi: 10.1002/smll.202104339
      [62]
      N. Kumar Katiyar, K. Biswas, J.W. Yeh, S. Sharma, and C. Sekhar Tiwary, A perspective on the catalysis using the high entropy alloys, Nano Energy, 88(2021), art. No. 106261. doi: 10.1016/j.nanoen.2021.106261
      [63]
      K. Li and W. Chen, Recent progress in high-entropy alloys for catalysts: Synthesis, applications, and prospects, Mater. Today Energy, 20(2021), art. No. 100638. doi: 10.1016/j.mtener.2021.100638
      [64]
      J. Tang, J.L. Xu, Z.G. Ye, X.B. Li, and J.M. Luo, Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction, J. Mater. Sci. Technol., 79(2021), p. 171. doi: 10.1016/j.jmst.2020.10.079
      [65]
      S.Q. Zhao, H.Y. Wu, R. Yin, et al., Preparation and electrocatalytic properties of (FeCrCoNiAl0.1)Ox high-entropy oxide and NiCo–(FeCrCoNiAl0.1)Ox heterojunction films, J. Alloys Compd., 868(2021), art. No. 159108. doi: 10.1016/j.jallcom.2021.159108
      [66]
      P.Y. Ma, S.C. Zhang, M.T. Zhang, et al., Hydroxylated high-entropy alloy as highly efficient catalyst for electrochemical oxygen evolution reaction, Sci. China Mater., 63(2020), p. 2613. doi: 10.1007/s40843-020-1461-2
      [67]
      J. Tang, J.L. Xu, Z.G. Ye, et al., Synthesis of flower-like cobalt, nickel phosphates grown on the surface of porous high entropy alloy for efficient oxygen evolution, J. Alloys Compd., 885(2021), art. No. 160995. doi: 10.1016/j.jallcom.2021.160995
      [68]
      Y.E. Xin, S.H. Li, Y.Y. Qian, et al., High-entropy alloys as a platform for catalysis: Progress, challenges, and opportunities, ACS Catal., 10(2020), No. 19, p. 11280. doi: 10.1021/acscatal.0c03617
      [69]
      K. Huang, B.W. Zhang, J.S. Wu, et al., Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst, J. Mater. Chem. A, 8(2020), No. 24, p. 11938. doi: 10.1039/D0TA02125C
      [70]
      K. Huang, D.D. Peng, Z.X. Yao, et al., Cathodic plasma driven self-assembly of HEAs dendrites by pure single FCC FeCoNiMnCu nanoparticles as high efficient electrocatalysts for OER, Chem. Eng. J., 425(2021), art. No. 131533. doi: 10.1016/j.cej.2021.131533
      [71]
      B. Huang, W.H. Xiong, Q.Q. Yang, Z.H. Yao, G.P. Zhang, and M. Zhang, Preparation, microstructure and mechanical properties of multicomponent Ni3Al-bonded cermets, Ceram. Int., 40(2014), No. 9, p. 14073. doi: 10.1016/j.ceramint.2014.05.135
      [72]
      F. Monireh and A. Nasim, NiCoFe-layered double hydroxides/MXene/N-doped carbon nanotube composite as a high performance bifunctional catalyst for oxygen electrocatalytic reactions in metal–air batteries, J. Electroanal. Chem., 901(2021), art. No. 115797. doi: 10.1016/j.jelechem.2021.115797
      [73]
      J. Yang, A.G. Baker, H.W. Liu, W.N. Martens, and R.L. Frost, Size-controllable synthesis of chromium oxyhydroxide nanomaterials using a soft chemical hydrothermal route, J. Mater. Sci., 45(2010), No. 24, p. 6574. doi: 10.1007/s10853-010-4746-3
      [74]
      L.M. Cao, J.W. Wang, D.C. Zhong, and T.B. Lu, Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction, J. Mater. Chem. A, 6(2018), No. 7, p. 3224. doi: 10.1039/C7TA09734D
      [75]
      D.R. Lide, eds., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 2004.
      [76]
      X.Z. Guo, G.Z. Liang, and A.J. Gu, Construction of nickel-doped cobalt hydroxides hexagonal nanoplates for advanced oxygen evolution electrocatalysis, J. Colloid Interface Sci., 553(2019), p. 713. doi: 10.1016/j.jcis.2019.05.072
      [77]
      Q. Zhou, Y.P. Chen, G.Q. Zhao, et al., Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction, ACS Catal., 8(2018), No. 6, p. 5382. doi: 10.1021/acscatal.8b01332
      [78]
      Z.L. Wang, W.J. Liu, Y.M. Hu, et al., Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea, Appl. Catal. B, 272(2020), art. No. 118959. doi: 10.1016/j.apcatb.2020.118959
      [79]
      J.F. Chang, G.Z. Wang, Z.Z. Yang, et al., Dual-doping and synergism toward high-performance seawater electrolysis, Adv. Mater., 33(2021), No. 33, art. No. 2101425. doi: 10.1002/adma.202101425
      [80]
      X. Long, S. Xiao, Z.L. Wang, X.L. Zheng, and S.H. Yang, Co intake mediated formation of ultrathin nanosheets of transition metal LDH–An advanced electrocatalyst for oxygen evolution reaction, Chem. Commun., 51(2015), No. 6, p. 1120. doi: 10.1039/C4CC08856E
      [81]
      X. Long, Z.L. Wang, S. Xiao, Y.M. An, and S.H. Yang, Transition metal based layered double hydroxides tailored for energy conversion and storage, Mater. Today, 19(2016), No. 4, p. 213. doi: 10.1016/j.mattod.2015.10.006
      [82]
      H.M. Sun, Z.H. Yan, F.M. Liu, W.C. Xu, F.Y. Cheng, and J. Chen, Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution, Adv. Mater., 32(2020), No. 3, art. No. 1806326. doi: 10.1002/adma.201806326
      [83]
      B.H. Cui, Z. Hu, C. Liu, et al., Heterogeneous lamellar-edged Fe–Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation, Nano Res., 14(2021), p. 1149. doi: 10.1007/s12274-020-3164-3
      [84]
      C.J. Lyu, J.R. Cheng, K.L. Wu, et al., Interfacial electronic structure modulation of CoP nanowires with FeP nanosheets for enhanced hydrogen evolution under alkaline water/seawater electrolytes, Appl. Catal. B, 317(2022), art. No. 121799. doi: 10.1016/j.apcatb.2022.121799
      [85]
      J. Yang, Y.N. Wang, J.E. Yang, et al., Quench-induced surface engineering boosts alkaline freshwater and seawater oxygen evolution reaction of porous NiCo2O4 nanowires, Small, 18(2022), No. 3, art. No. 2106187. doi: 10.1002/smll.202106187
      [86]
      H. Sun, J.K. Sun, Y.Y. Song, et al., Nickel–cobalt hydrogen phosphate on nickel nitride supported on nickel foam for alkaline seawater electrolysis, ACS Appl. Mater. Interfaces, 14(2022), No. 19, p. 22061. doi: 10.1021/acsami.2c01643
      [87]
      H. Wang, J. Ying, Y.X. Xiao, et al., Ultrafast synthesis of Cu2O octahedrons inlaid in Ni foam for efficient alkaline water/seawater electrolysis, Electrochem. Commun., 134(2022), art. No. 107177. doi: 10.1016/j.elecom.2021.107177
      [88]
      W.J. Yuan, Z.D. Cui, S.L. Zhu, Z.Y. Li, S.L. Wu, and Y.Q. Liang, Structure engineering of electrodeposited NiMo films for highly efficient and durable seawater splitting, Electrochim. Acta, 365(2021), art. No. 137366. doi: 10.1016/j.electacta.2020.137366
      [89]
      Y.H. Wu, Z.N. Tian, S.F. Yuan, et al., Solar-driven self-powered alkaline seawater electrolysis via multifunctional earth-abundant heterostructures, Chem. Eng. J., 411(2021), art. No. 128538. doi: 10.1016/j.cej.2021.128538
      [90]
      Y.C. Li, X.Y. Wu, J.P. Wang, et al., Sandwich structured Ni3S2–MoS2–Ni3S2@Ni foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting, Electrochim. Acta, 390(2021), art. No. 138833. doi: 10.1016/j.electacta.2021.138833
      [91]
      T. Cui, X.J. Zhai, L.L. Guo, et al., Controllable synthesis of a self-assembled ultralow Ru, Ni-doped Fe2O3 lily as a bifunctional electrocatalyst for large-current-density alkaline seawater electrolysis, Chin. J. Catal., 43(2022), No. 8, p. 2202. doi: 10.1016/S1872-2067(22)64093-2
      [92]
      J.P. Sun, J.A. Li, Z.Z. Li, et al., Modulating the electronic structure on cobalt sites by compatible heterojunction fabrication for greatly improved overall water/seawater electrolysis, ACS Sustainable Chem. Eng., 10(2022), No. 30, p. 9980. doi: 10.1021/acssuschemeng.2c02571
      [93]
      Y. Yu, J. Li, J. Luo, et al., Mo-decorated cobalt phosphide nanoarrays as bifunctional electrocatalysts for efficient overall water/seawater splitting, Mater. Today Nano, 18(2022), art. No. 100216. doi: 10.1016/j.mtnano.2022.100216
      [94]
      W.J. Hao, C.Y. Fu, Y.M. Wang, et al., Coupling boron-modulated bimetallic oxyhydroxide with photosensitive polymer enable highly-active and ultra-stable seawater splitting, J. Energy Chem., 75(2022), p. 26. doi: 10.1016/j.jechem.2022.07.042
      [95]
      G. Li, F.S. Li, Y.L. Zhao, et al., Selective electrochemical alkaline seawater oxidation catalyzed by cobalt carbonate hydroxide nanorod arrays with sequential proton-electron transfer properties, ACS Sustainable Chem. Eng., 9(2021), No. 2, p. 905. doi: 10.1021/acssuschemeng.0c07953
      [96]
      S.W. Song, Y.H. Wang, X.X. Liu, et al., Synthesis of Mo-doped NiFe-phosphate hollow bird-nest architecture for efficient and stable seawater electrolysis, Appl. Surf. Sci., 604(2022), art. No. 154588. doi: 10.1016/j.apsusc.2022.154588
      [97]
      Y.S. Park, J.Y. Jeong, M.J. Jang, et al., Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis, J. Energy Chem., 75(2022), p. 127. doi: 10.1016/j.jechem.2022.08.011
      [98]
      X. Cao, E. Johnson, and M. Nath, Expanding multinary selenide based high-efficiency oxygen evolution electrocatalysts through combinatorial electrodeposition: Case study with Fe–Cu–Co selenides, ACS Sustainable Chem. Eng., 7(2019), No. 10, p. 9588. doi: 10.1021/acssuschemeng.9b01095

    Catalog


    • /

      返回文章
      返回