留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(12)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1075
  • HTML全文浏览量:  174
  • PDF下载量:  21
  • 被引次数: 0
Chuanchang Li, Xinke Peng, Jianjun He, and Jian Chen, Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1835-1845. https://doi.org/10.1007/s12613-023-2627-4
Cite this article as:
Chuanchang Li, Xinke Peng, Jianjun He, and Jian Chen, Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1835-1845. https://doi.org/10.1007/s12613-023-2627-4
引用本文 PDF XML SpringerLink
研究论文

用于热能储存的硬脂酸/海泡石基定型复合相变储热材料


  • 通讯作者:

    李传常    E-mail: chuanchangli@csust.edu.cn

文章亮点

  • (1) 采用真空浸渍法制备了储热性能优异的海泡石基复合相变储热材料。
  • (2) 系统地研究了微波辐照下不同盐酸浓度对提升海泡石负载相变材料能力的程度。
  • (3) 验证了改性海泡石基复合相变储热材料具有良好的形状结构稳定性能。
  • 可再生能源在转化和使用过程中,存在时间和空间上的供需不匹配。基于相变材料的储热技术可以很好地解决供需平衡问题,为可再生能源的高效稳定供能提供重要支撑。然而,相变材料的泄漏问题很大程度上阻碍了其实际应用。采用矿物负载相变材料制备定型复合相变储热材料是解决相变材料泄漏问题和改善热性能的一种有效手段。本文以海泡石(Sepiolite, ST)为主要原料,充分利用其矿物结构和储热特征,构建系列海泡石基定型复合相变储热材料。采用微波辅助盐酸改性海泡石,研究微波辐照下不同盐酸浓度改性对提升海泡石负载相变材料能力的程度。选取改性海泡石为支撑基体,采用真空浸渍法,制备了改性海泡石基复合相变储热材料。对比不同盐酸浓度处理后改性海泡石的孔结构数据,证明了0.5 mol·L−1盐酸处理的样品具有高负载能力。研究结果表明,当盐酸浓度为0.5 mol·L−1时,改性海泡石(STm0.5)的比表面积为139.11 m2·g−1,累计孔容为0.341 m3·g−1,复合材料(SA/STm0.5)的装载量为82.63%,SA结晶度为98.99%,其熔融和冷却潜热值达152.30 J·g−1和148.90 J·g−1。微波辅助酸浸有效改善了海泡石基复合相变储热材料的结晶度,实现了对海泡石基复合相变储热材料的热性能调控,获得了具有高负载能力的改性海泡石基体和高相变潜热值的改性海泡石基复合相变储热材料。
  • Research Article

    Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage

    + Author Affiliations
    • Sepiolite (ST) was used as a supporting matrix in compiste phase change materials (PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatment were innovatively used for the modification of sepiolite. The modified sepiolite (STm) obtained in different hydrochloric acid concentrations (0.25, 0.5, 0.75, and 1.0 mol·L−1) was added to stearic acid (SA) via vacuum impregnation method. The thermophysical properties of the composites were changed by varying the hydrochloric acid concentration. The SA-STm0.5 obtained by microwave acid treatment at 0.5 mol·L−1 hydrochloric acid concentration showed a higher loading capacity (82.63%) than other composites according to the differential scanning calorimeter (DSC) analysis. The melting and freezing enthalpies of SA-STm0.5 were of 152.30 and 148.90 J·g−1, respectively. The thermal conductivity of SA-STm0.5 was as high as 1.52 times that of pure SA. In addition, the crystal structure, surface morphology, and microporous structure of STm were studied, and the mechanism of SA-STm0.5 performance enhancement was further revealed by Brunauere Emmett Teller (BET) analysis. Leakage experiment showed that SA-STm0.5 had a good morphological stability. These results demostrate that SA-STm0.5 has a potential application in thermal energy storage.
    • loading
    • [1]
      Y. Tian and C.Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energy, 104(2013), p. 538. doi: 10.1016/j.apenergy.2012.11.051
      [2]
      H.A. Nasef, S.A. Nada, and H. Hassan, Integrative passive and active cooling system using PCM and nanofluid for thermal regulation of concentrated photovoltaic solar cells, Energy Convers. Manage., 199(2019), art. No. 112065. doi: 10.1016/j.enconman.2019.112065
      [3]
      S.B. Subramaniam and R. Senthil, Heat transfer enhancement of concentrated solar absorber using hollow cylindrical fins filled with phase change material, Int. J. Hydrogen Energy, 46(2021), No. 43, p. 22344. doi: 10.1016/j.ijhydene.2021.04.061
      [4]
      X. Wen, J. Ji, Z.M. Li, and Z.Y. Song, Performance analysis of a concentrated system with series photovoltaic/thermal module and solar thermal collector integrated with PCM and TEG, Energy, 249(2022), art. No. 123777. doi: 10.1016/j.energy.2022.123777
      [5]
      L. Ni, D. Qv, Y. Yao, F.X. Niu, and W.J. Hu, An experimental study on performance enhancement of a PCM based solar-assisted air source heat pump system under cooling modes, Appl. Therm. Eng., 100(2016), p. 434. doi: 10.1016/j.applthermaleng.2016.02.001
      [6]
      S. Kenzhekhanov, S. Ali Memon, and I. Adilkhanova, Quantitative evaluation of thermal performance and energy saving potential of the building integrated with PCM in a subarctic climate, Energy, 192(2020), art. No. 116607. doi: 10.1016/j.energy.2019.116607
      [7]
      E. Mohseni and W. Tang, Parametric analysis and optimisation of energy efficiency of a lightweight building integrated with different configurations and types of PCM, Renewable Energy, 168(2021), p. 865. doi: 10.1016/j.renene.2020.12.112
      [8]
      N. Soares, J.J. Costa, A.R. Gaspar, and P. Santos, Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency, Energy Build., 59(2013), p. 82. doi: 10.1016/j.enbuild.2012.12.042
      [9]
      M. Sovetova, S. Ali Memon, and J. Kim, Thermal performance and energy efficiency of building integrated with PCMs in hot desert climate region, Sol. Energy, 189(2019), p. 357. doi: 10.1016/j.solener.2019.07.067
      [10]
      J.J. Cheng, S.S. Niu, M.Y. Kang, et al., The thermal behavior and flame retardant performance of phase change material microcapsules with modified carbon nanotubes, Energy, 240(2022), art. No. 122821. doi: 10.1016/j.energy.2021.122821
      [11]
      P. Cheng, K. Wei, W.S. Shi, J.H. Shi, S.F. Wang, and B. Ma, Preparation and performance analysis of phase change microcapsule/epoxy resin composite phase change material, J. Energy Storage, 47(2022), art. No. 103581. doi: 10.1016/j.est.2021.103581
      [12]
      X. Huang, C.Q. Zhu, Y.X. Lin, and G.Y. Fang, Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review, Appl. Therm. Eng., 147(2019), p. 841. doi: 10.1016/j.applthermaleng.2018.11.007
      [13]
      X. Wan, H.Y. Zhang, C. Chen, R. Wang, L. Su, and B.H. Guo, Synthesis and characterization of phase change materials microcapsules with paraffin core/cross-linked hybrid polymer shell for thermal energy storage, J. Energy Storage, 32(2020), art. No. 101897. doi: 10.1016/j.est.2020.101897
      [14]
      C.C. Li, X.B. Zhao, B. Zhang, et al., Stearic acid/copper foam as composite phase change materials for thermal energy storage, J. Therm. Sci., 29(2020), No. 2, p. 492. doi: 10.1007/s11630-020-1272-8
      [15]
      P.Z. Lv, C.Z. Liu, and Z.H. Rao, Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications, Renewable Sustainable Energy Rev., 68(2017), p. 707. doi: 10.1016/j.rser.2016.10.014
      [16]
      X.B. Zhao, C.C. Li, K.H. Bai, B.S. Xie, J. Chen, Q.X. Liu. Multiple structure graphite stabilized stearic acid as composite phase change materials for thermal energy storage, Int. J. Min. Sci. Techno., 32(2022), p. 1419. doi: 10.1016/j.ijmst.2022.10.003
      [17]
      X.L. Wang, B. Li, Z.G. Qu, J.F. Zhang, and Z.G. Jin, Effects of graphite microstructure evolution on the anisotropic thermal conductivity of expanded graphite/paraffin phase change materials and their thermal energy storage performance, Int. J. Heat Mass Transf., 155(2020), art. No. 119853. doi: 10.1016/j.ijheatmasstransfer.2020.119853
      [18]
      W.J. Miao, S.L. Gan, X.G. Li, and Y. Lv, A triply synergistic method for palygorskite activation to effectively impregnate phase change materials (PCMs) for thermal energy storage, Appl. Clay Sci., 189(2020), art. No. 105530. doi: 10.1016/j.clay.2020.105530
      [19]
      C.C. Li, M.F. Wang, B.S. Xie, H. Ma, and J. Chen, Enhanced properties of diatomite-based composite phase change materials for thermal energy storage, Renewable Energy, 147(2020), p. 265. doi: 10.1016/j.renene.2019.09.001
      [20]
      J.S. Zhang, X. Zhang, Y.Z. Wan, D.D. Mei, and B. Zhang, Preparation and thermal energy properties of paraffin/halloysite nanotube composite as form-stable phase change material, Sol. Energy, 86(2012), No. 5, p. 1142. doi: 10.1016/j.solener.2012.01.002
      [21]
      P.Z. Lv, C.Z. Liu, and Z.H. Rao, Experiment study on the thermal properties of paraffin/Kaolin thermal energy storage form-stable phase change materials, Appl. Energy, 182(2016), p. 475. doi: 10.1016/j.apenergy.2016.08.147
      [22]
      D.Y. Zhang, C.C. Li, N.Z. Lin, B.S. Xie, and J. Chen, Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 168. doi: 10.1007/s12613-021-2357-4
      [23]
      H. Yi, Z. Ai, Y.L. Zhao, X. Zhang, and S.X. Song, Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage, Sol. Energy Mater. Sol. Cells, 204(2020), art. No. 110233. doi: 10.1016/j.solmat.2019.110233
      [24]
      C.C. Li, L.J. Fu, J. Ouyang, A.D. Tang, and H.M. Yang, Kaolinite stabilized paraffin composite phase change materials for thermal energy storage, Appl. Clay Sci., 115(2015), p. 212. doi: 10.1016/j.clay.2015.07.033
      [25]
      C.C. Li, L.J. Fu, J. Ouyang, and H.M. Yang, Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage, Sci. Rep., 3(2013), art. No. 1908. doi: 10.1038/srep01908
      [26]
      C.C. Li, J. Ouyang, and H.M. Yang, Novel sensible thermal storage material from natural minerals, Phys. Chem. Miner., 40(2013), No. 9, p. 681. doi: 10.1007/s00269-013-0603-7
      [27]
      M. Li, Z.S. Wu, and H.T. Kao, Study on preparation, structure and thermal energy storage property of capric-palmitic acid/attapulgite composite phase change materials, Appl. Energy, 88(2011), No. 9, p. 3125. doi: 10.1016/j.apenergy.2011.02.030
      [28]
      R.L. Wen, X.G. Zhang, Z.H. Huang, et al., Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells, 178(2018), p. 273. doi: 10.1016/j.solmat.2018.01.032
      [29]
      S.K. Song, L.J. Dong, Y. Zhang, et al., Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage, Energy, 76(2014), p. 385. doi: 10.1016/j.energy.2014.08.042
      [30]
      W. Yin, M. Liu, Y.Y. Chen, Q.Z. Yao, S.Q. Fu, and G.T. Zhou, Microwave-assisted preparation of Mn3O4@sepiolite nanocomposite for highly efficient removal of uranium, Appl. Clay Sci., 228(2022), art. No. 106597. doi: 10.1016/j.clay.2022.106597
      [31]
      F. Zhou, C.J. Yan, Y. Zhang, et al., Purification and defibering of a Chinese sepiolite, Appl. Clay Sci., 124-125(2016), p. 119. doi: 10.1016/j.clay.2016.02.013
      [32]
      Y. Konuklu and O. Ersoy, Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage, Appl. Therm. Eng., 107(2016), p. 575. doi: 10.1016/j.applthermaleng.2016.07.012
      [33]
      W.W. Cui, H.Z. Zhang, Y.P. Xia, et al., Preparation and thermophysical properties of a novel form-stable CaCl2·6H2O/sepiolite composite phase change material for latent heat storage, J. Therm. Anal. Calorim., 131(2018), No. 1, p. 57. doi: 10.1007/s10973-017-6170-2
      [34]
      A. Sarı, R.K. Sharma, G. Hekimoğlu, and V.V. Tyagi, Preparation, characterization, thermal energy storage properties and temperature control performance of form-stabilized sepiolite based composite phase change materials, Energy Build., 188-189(2019), p. 111. doi: 10.1016/j.enbuild.2019.02.008
      [35]
      Q. Shen, S.Y. Liu, J. Ouyang, and H.M. Yang, Sepiolite supported stearic acid composites for thermal energy storage, RSC Adv., 6(2016), No. 113, p. 112493. doi: 10.1039/C6RA22015K
      [36]
      Q. Shen, J. Ouyang, Y. Zhang, and H.M. Yang, Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage, Appl. Clay Sci., 146(2017), p. 14. doi: 10.1016/j.clay.2017.05.035
      [37]
      Y. Luo, S.Y. Xiong, J.T. Huang, et al., Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage, Sol. Energy Mater. Sol. Cells, 231(2021), art. No. 111300. doi: 10.1016/j.solmat.2021.111300
      [38]
      C.C. Li, B.S. Xie, Z.X. He, J. Chen, and Y. Long, 3D structure fungi-derived carbon stabilized stearic acid as a composite phase change material for thermal energy storage, Renewable Energy, 140(2019), p. 862. doi: 10.1016/j.renene.2019.03.121
      [39]
      B.S. Xie, C.C. Li, J. Chen, and N. Wang, Exfoliated 2D hexagonal boron nitride nanosheet stabilized stearic acid as composite phase change materials for thermal energy storage, Sol. Energy, 204(2020), p. 624. doi: 10.1016/j.solener.2020.05.004
      [40]
      X.L. Zhang, Q.L. Lin, H.J. Luo, and S.Y. Luo, Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage, Appl. Energy, 260(2020), art. No. 114278. doi: 10.1016/j.apenergy.2019.114278

    Catalog


    • /

      返回文章
      返回