留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(17)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  877
  • HTML全文浏览量:  393
  • PDF下载量:  37
  • 被引次数: 0
Pejman Zamaniand Zia Valefi, Comparative investigation of microstructure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al2O3 composite coatings using satellited powders, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1779-1791. https://doi.org/10.1007/s12613-023-2630-9
Cite this article as:
Pejman Zamaniand Zia Valefi, Comparative investigation of microstructure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al2O3 composite coatings using satellited powders, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1779-1791. https://doi.org/10.1007/s12613-023-2630-9
引用本文 PDF XML SpringerLink
研究论文

附属粉末高速氧喷涂CoNiCrAlY/纳米Al2O3复合涂层显微组织及高温抗氧化性能对比研究


  • 通讯作者:

    Pejman Zamani    E-mail: pejmanzamani33@yahoo.com

  • 本文采用高速氧燃料工艺在Inconel738高温合金基体上沉积了含有2wt%、4wt%和6wt%氧化物纳米颗粒和纯CoNiCrAlY粉末的附属CoNiCrAlY–Al2O3原料。本研究在1050°C下进行5、50、100、150、200和400 h的氧化试验,分别用扫描电镜和X射线衍射表征粉末和涂层的微观结构和相组成,并对涂层的结合强度进行了评价。结果表明,随着纳米颗粒含量的增加(从2wt%增加到6wt%),涂层的孔隙率(从1vol%增加到4.7vol%)、未熔颗粒和粗糙度(从4.8 µm增加到8.8 µm)增加,结合强度从71 µm下降到48 µm。氧化400 h后,纯涂层和复合涂层(2wt%、4wt%和6wt%)的热生长氧化层厚度分别为6.5、5.5、7.6和8.1 µm。CoNiCrAlY–2wt% Al2O3涂层由于分散良好的纳米颗粒的扩散阻挡效应,表现出最高的抗氧化性。CoNiCrAlY–6wt % Al2O3涂层由于其粗糙的表面形貌和多孔的微观结构而具有最低的抗氧化性。
  • Research Article

    Comparative investigation of microstructure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al2O3 composite coatings using satellited powders

    + Author Affiliations
    • Satellited CoNiCrAlY–Al2O3 feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050°C for 5, 50, 100, 150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles (from 2wt% to 6wt%), the amount of porosity (from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings (from 4.8 to 8.8 µm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings (2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 µm, respectively. The CoNiCrAlY–2wt% Al2O3 coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al2O3 coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure.
    • loading
    • [1]
      J.G. Thakare, C. Pandey, M.M. Mahapatra, and R.S. Mulik, Thermal barrier coatings—A state of the art review, Met. Mater. Int., 27(2021), No. 7, p. 1947. doi: 10.1007/s12540-020-00705-w
      [2]
      A. Kalush, D. Texier, M. Ecochard, et al., Size effects on high temperature oxidation of MCrAlY coatings processed via APS and HVOF depositions, Surf. Coat. Technol., 440(2022), art. No. 128483. doi: 10.1016/j.surfcoat.2022.128483
      [3]
      S. Ajdari, F.S. Nogorani, and P.Z. Moghadam, The effect of the MCrAlY composition and aluminizing cycle upon the microstructure and hot corrosion resistance of the over-aluminized MCrAlY coating on IN738LC alloy substrate, Mater. Corros., 74(2023), No. 6, p. 846. doi: 10.1002/maco.202213496
      [4]
      F. Ghadami, A.S.R. Aghdam, and S. Ghadami, Mechanism of the oxide scale formation in thermally-sprayed NiCoCrAlY coatings modified by CeO2 nanoparticles, Mater. Today Commun., 24(2020), art. No. 101357. doi: 10.1016/j.mtcomm.2020.101357
      [5]
      P.M. Zhang, Performance of MCrAlX Coatings: Oxidation, Hot Corrosion and Interdiffusion, Linköping University Electronic Press, Linköping, 2019.
      [6]
      Y.J. Han, Z.Y. Zhu, X.Q. Li, S.G. Shen, and F.X. Ye, Effects of vacuum pre-oxidation process on thermally-grown oxides layer of CoCrAlY high temperature corrosion resistance coating, Trans. Nonferrous Met. Soc. China, 25(2015), No. 10, p. 3305. doi: 10.1016/S1003-6326(15)63991-7
      [7]
      Y. Chen, X.F. Zhao, and P. Xiao, Effect of microstructure on early oxidation of MCrAlY coatings, Acta Mater., 159(2018), p. 150. doi: 10.1016/j.actamat.2018.08.018
      [8]
      J.A. Cabral-Miramontes, C. Gaona-Tiburcio, F. Almeraya-Calderón, F.H. Estupiñan-Lopez, G.K. Pedraza-Basulto, and C.A. Poblano-Salas, Parameter studies on high-velocity oxy-fuel spraying of CoNiCrAlY coatings used in the aeronautical industry, Int. J. Corros., 2014(2014), art. No. 703806.
      [9]
      H. Vasudev, L. Thakur, H. Singh, and A. Bansal, A study on processing and hot corrosion behaviour of HVOF sprayed Inconel718-nano Al2O3 coatings, Mater. Today Commun., 25(2020), art. No. 101626. doi: 10.1016/j.mtcomm.2020.101626
      [10]
      P. Zamani, R. Ghasemi, S. Torabi, et al., Characterization and high-temperature fretting wear resistance of HVOF-sprayed Cr3C2–NiCr, CoCrWC and CoCrWNiC hardfacing coatings, J. Therm. Spray Technol., 31(2022), No. 7, p. 2157. doi: 10.1007/s11666-022-01431-y
      [11]
      T. Huang, J. Bergholz, G. Mauer, R. Vassen, D. Naumenko, and W.J. Quadakkers, Effect of test atmosphere composition on high-temperature oxidation behaviour of CoNiCrAlY coatings produced from conventional and ODS powders, Mater. High Temp., 35(2018), No. 1-3, p. 97. doi: 10.1080/09603409.2017.1389422
      [12]
      D. Toma, W. Brandl, and U. Köster, The characteristics of alumina scales formed on HVOF-sprayed MCrAlY coatings, Oxid. Met., 53(2000), No. 1, p. 125.
      [13]
      T.A. Taylor and D.F. Bettridge, Development of alloyed and dispersion-strengthened MCrAlY coatings, Surf. Coat. Technol., 86-87(1996), p. 9. doi: 10.1016/S0257-8972(96)02961-1
      [14]
      H.Y. Wang, D.W. Zuo, Y.L. Sun, F. Xu, and D. Zhang, Microstructure of nanometer Al2O3 dispersion strengthened Ni-based high-temperature protective coatings by laser cladding, Trans. Nonferrous Met. Soc. China, 19(2009), No. 3, p. 586. doi: 10.1016/S1003-6326(08)60317-9
      [15]
      J. Bergholz, B.A. Pint, K.A. Unocic, and R. Vaßen, Fabrication of oxide dispersion strengthened bond coats with low Al2O3 content, J. Therm. Spray Technol., 26(2017), No. 5, p. 868. doi: 10.1007/s11666-017-0550-9
      [16]
      H. Vasudev, L. Thakur, H. Singh, and A. Bansal, Effect of addition of Al2O3 on the high-temperature solid particle erosion behaviour of HVOF sprayed Inconel-718 coatings, Mater. Today Commun., 30(2022), art. No. 103017. doi: 10.1016/j.mtcomm.2021.103017
      [17]
      I.G. Wright, Dispersed phases in powder metallurgically-produced alloys: Contributions to high-temperature oxidation behavior, Mater. High Temp., 39(2022), No. 5, p. 387. doi: 10.1080/09603409.2022.2113709
      [18]
      K.S. Al-Hamdani, J.W. Murray, T. Hussain, A. Kennedy, and A.T. Clare, Cold sprayed metal-ceramic coatings using satellited powders, Mater. Lett., 198(2017), p. 184. doi: 10.1016/j.matlet.2017.03.175
      [19]
      M. Simonelli, N.T. Aboulkhair, P. Cohen, et al., A comparison of Ti–6Al–4V in-situ alloying in Selective Laser Melting using simply-mixed and satellited powder blend feedstocks, Mater. Charact., 143(2018), p. 118. doi: 10.1016/j.matchar.2018.05.039
      [20]
      A. Clare and A. Kennedy, Additive Manufacturing, U.S. Patent, Appl. 15/022,344, 2016.
      [21]
      H. Tan, D.P. Hao, K. Al-Hamdani, F.Y. Zhang, Z.K. Xu, and A.T. Clare, Direct metal deposition of TiB2/AlSi10Mg composites using satellited powders, Mater. Lett., 214(2018), p. 123. doi: 10.1016/j.matlet.2017.11.121
      [22]
      M.W. Bai, B. Song, L. Reddy, and T. Hussain, Preparation of MCrAlY–Al2O3 composite coatings with enhanced oxidation resistance through a novel powder manufacturing process, J. Therm. Spray Technol., 28(2019), No. 3, p. 433. doi: 10.1007/s11666-019-00830-y
      [23]
      S. Deshpande, A. Kulkarni, S. Sampath, and H. Herman, Application of image analysis for characterization of porosity in thermal spray coatings and correlation with small angle neutron scattering, Surf. Coat. Technol., 187(2004), No. 1, p. 6. doi: 10.1016/j.surfcoat.2004.01.032
      [24]
      M. Abbas, G.M. Smith, and P.R. Munroe, Microstructural investigation of bonding and melting-induced rebound of HVOF sprayed Ni particles on an aluminum substrate, Surf. Coat. Technol., 402(2020), art. No. 126353. doi: 10.1016/j.surfcoat.2020.126353
      [25]
      H.N. Xuan, L.Y. Chen, N. Li, et al., Temperature profile, microstructural evolution, and wear resistance of plasma-sprayed NiCrBSi coatings under different powers in a vertical remelting way, Mater. Chem. Phys., 292(2022), art. No. 126773. doi: 10.1016/j.matchemphys.2022.126773
      [26]
      W.M. Guo, H.L. Zhang, S. Zhao, et al., Corrosion behavior of the CoNiCrAlY–Al2O3 composite coating based on core-shell structured powder design, Materials, 14(2021), No. 22, art. No. 7093. doi: 10.3390/ma14227093
      [27]
      D. Toma, W. Brandl, and U. Köster, Studies on the transient stage of oxidation of VPS and HVOF sprayed MCrAlY coatings, Surf. Coat. Technol., 120-121(1999), p. 8. doi: 10.1016/S0257-8972(99)00332-1
      [28]
      H. Chen, M. Fan, L. Li, et al., Effects of internal oxide contents on the oxidation and β-phase depletion behaviour in HOVF CoNiCrAlY coatings, Surf. Coat. Technol., 424(2021), art. No. 127666. doi: 10.1016/j.surfcoat.2021.127666
      [29]
      P. Richer, A. Zúñiga, M. Yandouzi, and B. Jodoin, CoNiCrAlY microstructural changes induced during cold gas dynamic spraying, Surf. Coat. Technol., 203(2008), No. 3-4, p. 364. doi: 10.1016/j.surfcoat.2008.09.014
      [30]
      L.D. Zhao, M. Parco, and E. Lugscheider, Wear behaviour of Al2O3 dispersion strengthened MCrAlY coating, Surf. Coat. Technol., 184(2004), No. 2-3, p. 298. doi: 10.1016/j.surfcoat.2003.10.055
      [31]
      B.Q. Xu, L.R. Luo, J. Lu, X.F. Zhao, and P. Xiao, Effect of residual stress on the spallation of the thermally-grown oxide formed on NiCoCrAlY coating, Surf. Coat. Technol., 381(2020), art. No. 125112. doi: 10.1016/j.surfcoat.2019.125112
      [32]
      Q. Yuan, L.J. Chai, T. Yang, et al., Laser-clad FeCrAl/TiC composite coating on ferrite/martensitic steel: Significant grain refinement and wear resistance enhancement induced by adding TiC, Surf. Coat. Technol., 456(2023), art. No. 129272. doi: 10.1016/j.surfcoat.2023.129272
      [33]
      S. Saeidi, Microstructure, Oxidation and Mechanical Properties of As-sprayed and Annealed HVOF and VPS CoNiCrAlY Coatings [Dissertation], University of Nottingham, Zhejiang, 2010.
      [34]
      A. Krella, S. Tekumalla, and M. Gupta, Influence of micro Ti particles on resistance to cavitation erosion of Mg–xTi composites, Mech. Mater., 154(2021), art. No. 103705. doi: 10.1016/j.mechmat.2020.103705
      [35]
      Z.M. Goudarzi, Z. Valefi, and P. Zamani, Effect of functionally graded structure design on durability and thermal insulation capacity of plasma-sprayed thick thermal barrier coating, Ceram. Int., 47(2021), No. 24, p. 34361. doi: 10.1016/j.ceramint.2021.08.349
      [36]
      F.J. Belzunce, V. Higuera, and S. Poveda, High temperature oxidation of HFPD thermal-sprayed MCrAlY coatings, Mater. Sci. Eng. A, 297(2001), No. 1-2, p. 162. doi: 10.1016/S0921-5093(00)01239-9
      [37]
      A.C. Karaoglanli, Y. Ozgurluk, and K.M. Doleker, Comparison of microstructure and oxidation behavior of CoNiCrAlY coatings produced by APS, SSAPS, D-gun, HVOF and CGDS techniques, Vacuum, 180(2020), art. No. 109609. doi: 10.1016/j.vacuum.2020.109609
      [38]
      W. Brandl, D. Toma, J. Krüger, H.J. Grabke, and G. Matthäus, The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings, Surf. Coat. Technol., 94-95(1997), p. 21. doi: 10.1016/S0257-8972(97)00470-2
      [39]
      N. Abu-warda, A.J. López, M.D. López, and M.V. Utrilla, Ni20Cr coating on T24 steel pipes by HVOF thermal spray for high temperature protection, Surf. Coat. Technol., 381(2020), art. No. 125133. doi: 10.1016/j.surfcoat.2019.125133
      [40]
      P.M. Zhang, E. Sadeghimeresht, S.L. Chen, et al., Effects of surface finish on the initial oxidation of HVAF-sprayed NiCoCrAlY coatings, Surf. Coat. Technol., 364(2019), p. 43. doi: 10.1016/j.surfcoat.2019.02.068
      [41]
      H.E. Evans and M.P. Taylor, Oxidation of high-temperature coatings, Proc. Inst. Mech. Eng. Part G, 220(2006), No. 1, p. 1. doi: 10.1177/095441000622000101
      [42]
      F. Ghadami, A.S.R. Aghdam, A. Zakeri, B. Saeedi, and P. Tahvili, Synergistic effect of CeO2 and Al2O3 nanoparticle dispersion on the oxidation behavior of MCrAlY coatings deposited by HVOF, Ceram. Int., 46(2020), No. 4, p. 4556. doi: 10.1016/j.ceramint.2019.10.184
      [43]
      A. Zakeri, E. Bahmani, A.S.R. Aghdam, B. Saeedi, and M. Bai, A study on the effect of nano-CeO2 dispersion on the characteristics of thermally-grown oxide (TGO) formed on NiCoCrAlY powders and coatings during isothermal oxidation, J. Alloys Compd., 835(2020), art. No. 155319. doi: 10.1016/j.jallcom.2020.155319
      [44]
      L.Y. Ni, Z.L. Wu, and C.G. Zhou, Effects of surface modification on isothermal oxidation behavior of HVOF-sprayed NiCrAlY coatings, Prog. Nat. Sci., 21(2011), No. 2, p. 173. doi: 10.1016/S1002-0071(12)60052-5
      [45]
      J.R. Nicholls, Advances in coating design for high-performance gas turbines, MRS Bull., 28(2003), No. 9, p. 659. doi: 10.1557/mrs2003.194
      [46]
      F. Tang, L. Ajdelsztajn, G.E. Kim, V. Provenzano, and J.M. Schoenung, Effects of surface oxidation during HVOF processing on the primary stage oxidation of a CoNiCrAlY coating, Surf. Coat. Technol., 185(2004), No. 2-3, p. 228. doi: 10.1016/j.surfcoat.2003.11.020
      [47]
      M. Pace, Oxidation of MCrAlY Oxidation of MCrAlY superalloys [Dissertation], Loughborough University, Loughborough, Leicestershire, 2010.
      [48]
      H. Yang, X. Huang, J.S. Guo, et al., High temperature oxidation resistance of arc ion plating NiCoCrAlY coating modified via laser shock peening, J. Alloys Compd., 911(2022), art. No. 164708. doi: 10.1016/j.jallcom.2022.164708

    Catalog


    • /

      返回文章
      返回