Cite this article as: |
Deyin Zhang, Xu Hao, Baorui Jia, Haoyang Wu, Lin Zhang, Mingli Qin, and Xuanhui Qu, Influences of oxide content and sintering temperature on microstructures and mechanical properties of intragranular-oxide strengthened iron alloys prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1748-1755. https://doi.org/10.1007/s12613-023-2631-8 |
张德印 E-mail: zhangdeyin@ustb.edu.cn
秦明礼 E-mail: qinml@mater.ustb.edu.cn
[1] |
D. Raabe, C.C. Tasan, and E.A. Olivetti, Strategies for improving the sustainability of structural metals, Nature, 575(2019), No. 7781, p. 64. doi: 10.1038/s41586-019-1702-5
|
[2] |
X.Y. Li and K. Lu, Improving sustainability with simpler alloys, Science, 364(2019), No. 6442, p. 733. doi: 10.1126/science.aaw9905
|
[3] |
Z.F. Lei, X.J. Liu, Y. Wu, et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563(2018), No. 7732, p. 546. doi: 10.1038/s41586-018-0685-y
|
[4] |
J. Bauer, M. Sala-Casanovas, M. Amiri, and L. Valdevit, Nanoarchitected metal/ceramic interpenetrating phase composites, Sci. Adv., 8(2022), No. 33, art. No. eabo3080. doi: 10.1126/sciadv.abo3080
|
[5] |
L.P. Xie, W.Y. Sun, J.L. Wang, M.H. Chen, and F.H. Wang, Improving strength and oxidation resistance of a Ni-based ODS alloy via in-situ solid-state reaction, Corros. Sci., 197(2022), art. No. 110078. doi: 10.1016/j.corsci.2021.110078
|
[6] |
E.M.O. Lahcen, M.M.Á. Alcázar, and C.P. Almeida, New high strength ODS Eurofer steel processed by mechanical alloying, Mater. Sci. Eng. A, 817(2021), art. No. 141288. doi: 10.1016/j.msea.2021.141288
|
[7] |
L.Y. Yao, Y.J. Huang, Y.M. Gao, et al., Hot deformation behavior of nanostructural oxide dispersion-strengthened (ODS) Mo alloy, Int. J. Refract. Met. Hard Mater, 107(2022), art. No. 105881. doi: 10.1016/j.ijrmhm.2022.105881
|
[8] |
N. Oono, S. Ukai, S. Kondo, O. Hashitomi, and A. Kimura, Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors, J. Nucl. Mater., 465(2015), p. 835. doi: 10.1016/j.jnucmat.2015.06.057
|
[9] |
F.N. Xiao, T. Barriere, G. Cheng, et al., Extremely uniform nanosized oxide particles dispersion strengthened tungsten alloy with high tensile and compressive strengths fabricated involving liquid-liquid method, J. Alloys Compd., 878(2021), art. No. 160335. doi: 10.1016/j.jallcom.2021.160335
|
[10] |
J.H. Zhou, Y.F. Shen, and N. Jia, Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 335. doi: 10.1007/s12613-020-2121-1
|
[11] |
A. Arora and S. Mula, Phase evolution characteristics, thermal stability, and strengthening processes of Fe–Ni based ODS invar steel produced by mechanical alloying and spark plasma sintering, Mater. Sci. Eng. A, 856(2022), art. No. 143972. doi: 10.1016/j.msea.2022.143972
|
[12] |
P. Song, K. Yabuuchi, and P. Spätig, Insights into hardening, plastically deformed zone and geometrically necessary dislocations of two ion-irradiated FeCrAl(Zr)–ODS ferritic steels: A combined experimental and simulation study, Acta Mater., 234(2022), art. No. 117991. doi: 10.1016/j.actamat.2022.117991
|
[13] |
P.K. Parida, A. Dasgupta, V. Srihari, et al., Structural investigations of Y2O3 dispersoids during mechanical milling and high-temperature annealing of Fe–15Y2O3–xTi (x = 0–15) model ODS alloys, Adv. Powder Technol., 31(2020), No. 4, p. 1665. doi: 10.1016/j.apt.2020.02.002
|
[14] |
M. Brocq, B. Radiguet, J.M. Le Breton, F. Cuvilly, P. Pareige, and F. Legendre, Nanoscale characterisation and clustering mechanism in an Fe–Y2O3 model ODS alloy processed by reactive ball milling and annealing, Acta Mater., 58(2010), No. 5, p. 1806. doi: 10.1016/j.actamat.2009.11.022
|
[15] |
A. Mairov, D. Frazer, P. Hosemann, and K. Sridharan, Helium irradiation of Y2O3–Fe bilayer system, Scripta Mater., 162(2019), p. 156. doi: 10.1016/j.scriptamat.2018.11.006
|
[16] |
R.P. Li, L.J. Gong, J.G. Lin, J.X. Lin, K. Wang, and Z.M. Shi, Structural evolution of Fe–Y2O3–Ti powder during ball-milling and thermal treatment, Ceram. Int., 45(2019), No. 16, p. 20011. doi: 10.1016/j.ceramint.2019.06.260
|
[17] |
S.J. Wu, J. Li, C.J. Li, Y.Y. Li, L.Y. Xiong, and S. Liu, Preliminary study on the fabrication of 14Cr–ODS FeCrAl alloy by powder forging, J. Mater. Sci. Technol., 83(2021), p. 49. doi: 10.1016/j.jmst.2020.12.032
|
[18] |
A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, and M.W. Chen, Atomic structure of nanoclusters in oxide-dispersion-strengthened steels, Nat. Mater., 10(2011), No. 12, p. 922. doi: 10.1038/nmat3150
|
[19] |
S. Pasebani, A.K. Dutt, J. Burns, I. Charit, and R.S. Mishra, Oxide dispersion strengthened nickel based alloys via spark plasma sintering, Mater. Sci. Eng. A, 630(2015), p. 155. doi: 10.1016/j.msea.2015.01.066
|
[20] |
I. Hilger, F. Bergner, and T. Weißgärber, Bimodal grain size distribution of nanostructured ferritic ODS Fe–Cr alloys, J. Am. Ceram. Soc., 98(2015), No. 11, p. 3576. doi: 10.1111/jace.13833
|
[21] |
J. Fu, T.P. Davis, A. Kumar, I.M. Richardson, and M.J.M. Hermans, Characterisation of the influence of vanadium and tantalum on yttrium-based nano-oxides in ODS Eurofer steel, Mater. Charact., 175(2021), art. No. 111072. doi: 10.1016/j.matchar.2021.111072
|
[22] |
Z. Dong, Z.Q. Ma, J. Dong, et al., The simultaneous improvements of strength and ductility in W–Y2O3 alloy obtained via an alkaline hydrothermal method and subsequent low temperature sintering, Mater. Sci. Eng. A, 784(2020), art. No. 139329. doi: 10.1016/j.msea.2020.139329
|
[23] |
G. Liu, G.J. Zhang, F. Jiang, et al., Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility, Nat. Mater., 12(2013), No. 4, p. 344. doi: 10.1038/nmat3544
|
[24] |
D.Y. Zhang, T. Wu, B.R. Jia, et al., Properties of intragranular-oxide-strengthened Fe alloys fabricated by a versatile facile and scalable route, Powder Technol., 384(2021), p. 9. doi: 10.1016/j.powtec.2021.02.009
|
[25] |
L. Huang, L. Jiang, T.D. Topping, et al., In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure, Acta Mater., 122(2017), p. 19. doi: 10.1016/j.actamat.2016.09.034
|
[26] |
V. Mihalache, I. Mercioniu, A. Velea, and P. Palade, Effect of the process control agent in the ball-milled powders and SPS-consolidation temperature on the grain refinement, density and Vickers hardness of Fe14Cr ODS ferritic alloys, Powder Technol., 347(2019), p. 103. doi: 10.1016/j.powtec.2019.02.006
|
[27] |
A. Meza, E. Macía, P. Chekhonin, et al., The effect of composition and microstructure on the creep behaviour of 14 Cr ODS steels consolidated by SPS, Mater. Sci. Eng. A, 849(2022), art. No. 143441. doi: 10.1016/j.msea.2022.143441
|
[28] |
M.L. Qin, D.Y. Zhang, G. Chen, et al., A double-nanophase intragranular-oxide-strengthened iron alloy with high strength and remarkable ductility, Metall. Mater. Trans. A, 50(2019), No. 3, p. 1103. doi: 10.1007/s11661-018-05099-4
|
[29] |
J. Besson and A.G. Evans, The effect of reinforcements on the densification of a metal powder, Acta Metall. Mater., 40(1992), No. 9, p. 2247. doi: 10.1016/0956-7151(92)90143-3
|
[30] |
B. Srinivasarao, K. Oh-ishi, T. Ohkubo, and K. Hono, Bimodally grained high-strength Fe fabricated by mechanical alloying and spark plasma sintering, Acta Mater., 57(2009), No. 11, p. 3277. doi: 10.1016/j.actamat.2009.03.034
|
[31] |
R. Vijay, M. Nagini, J. Joardar, M. Ramakrishna, A.V. Reddy, and G. Sundararajan, Strengthening mechanisms in mechanically milled oxide-dispersed iron powders, Metall. Mater. Trans. A, 44(2013), No. 3, p. 1611. doi: 10.1007/s11661-012-1494-9
|
[32] |
C.S. Smith, Grains, phases, and interfaces: An interpretation of microstructure, Trans. Metall. Soc. AIME, 175(1948), p. 15.
|
[33] |
M.L. Qin, J.J. Yang, Z. Chen, et al., Preparation of intragranular-oxide-strengthened ultrafine-grained tungsten via low-temperature pressureless sintering, Mater. Sci. Eng. A, 774(2020), art. No. 138878. doi: 10.1016/j.msea.2019.138878
|
[34] |
L. Jiang, H.M. Wen, H. Yang, et al., Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix, Acta Mater., 89(2015), p. 327. doi: 10.1016/j.actamat.2015.01.062
|
[35] |
G. Gottstein and L.S. Shvindlerman, Theory of grain boundary motion in the presence of mobile particles, Acta Metall. Mater., 41(1993), No. 11, p. 3267. doi: 10.1016/0956-7151(93)90056-X
|
[36] |
Z. Chen, M.L. Qin, J.J. Yang, L. Zhang, B.R. Jia, and X.H. Qu, Thermal stability and grain growth kinetics of ultrafine-grained W with various amount of La2O3 addition, Metall. Mater. Trans. A, 51(2020), No. 8, p. 4113. doi: 10.1007/s11661-020-05836-8
|
[37] |
R. Vijay, M. Nagini, S.S. Sarma, M. Ramakrishna, A.V. Reddy, and G. Sundararajan, Structure and properties of nano-scale oxide-dispersed iron, Metall. Mater. Trans. A, 45(2014), No. 2, p. 777. doi: 10.1007/s11661-013-2019-x
|