留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(7)

数据统计

分享

计量
  • 文章访问数:  525
  • HTML全文浏览量:  186
  • PDF下载量:  19
  • 被引次数: 0
Deyin Zhang, Xu Hao, Baorui Jia, Haoyang Wu, Lin Zhang, Mingli Qin, and Xuanhui Qu, Influences of oxide content and sintering temperature on microstructures and mechanical properties of intragranular-oxide strengthened iron alloys prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1748-1755. https://doi.org/10.1007/s12613-023-2631-8
Cite this article as:
Deyin Zhang, Xu Hao, Baorui Jia, Haoyang Wu, Lin Zhang, Mingli Qin, and Xuanhui Qu, Influences of oxide content and sintering temperature on microstructures and mechanical properties of intragranular-oxide strengthened iron alloys prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1748-1755. https://doi.org/10.1007/s12613-023-2631-8
引用本文 PDF XML SpringerLink
研究论文

氧化物含量和烧结温度对放电等离子烧结制备晶内氧化物强化铁合金组织和力学性能的影响


  • 通讯作者:

    张德印    E-mail: zhangdeyin@ustb.edu.cn

    秦明礼    E-mail: qinml@mater.ustb.edu.cn

文章亮点

  • (1) 基于溶液燃烧路线和放电等离子烧结制备了具有高强度和优异韧性的晶内氧化钇弥散强化铁合金。
  • (2) 系统地研究了氧化物含量和烧结温度对氧化钇弥散强化铁合金微观组织和性能的影响规律。
  • (3) 揭示了晶内氧化钇弥散强化铁合金的形成机理和强化机制。
  • 越来越多的工程设计用结构材料需要有高的强度、刚度和断裂韧性。如何在不牺牲韧性的情况下提高材料强度一直是材料研究者制造高性能合金时孜孜以求的目标。本文基于溶液燃烧路线和放电等离子烧结制备了具有高强度和优异韧性的氧化钇纳米粒子均匀分散于铁基体晶粒内部的弥散强化铁合金,系统地研究了氧化钇含量和烧结温度对合金微观组织和性能的影响规律。研究结果表明,当氧化钇含量一定时,随着烧结温度的提升,合金的相对密度和晶粒尺寸增大,显微硬度和压缩强度降低,应变失效率增大。当烧结温度一定时,随着氧化钇含量的增加,氧化钇对合金致密化的作用阻碍增大,烧结合金的相对密度减小,显微硬度和压缩强度增大。可通过合理选择氧化钇添加量和烧结温度来获得的满足使用要求的合金。在650°C烧结温度下制备的Fe–2wt%Y2O3 合金的平均晶粒尺寸为147.5 nm,其晶内氧化钇粒子的平均晶粒尺寸为15.5 nm。通过压缩测试该合金极限抗压强度高达1.86 GPa,应变破坏率高达29%,表现出高的强度和良好的韧性,这主要归因于该合金的微观结构。本文也详细分析和揭示了该合金的微观结构形成机理和强化机制,其中细晶强化和弥散强化是提升合金性能的主要强化机制,为制备高性能弥散强化合金提供理论和技术基础。
  • Research Article

    Influences of oxide content and sintering temperature on microstructures and mechanical properties of intragranular-oxide strengthened iron alloys prepared by spark plasma sintering

    + Author Affiliations
    • How to increase strength without sacrificing ductility has been developed as a key goal in the manufacture of high-performance metals or alloys. Herein, the double-nanophase intragranular yttrium oxide dispersion strengthened iron alloy with high strength and appreciable ductility was fabricated by solution combustion route and subsequent spark plasma sintering, and the influences of yttrium oxide content and sintering temperature on microstructures and mechanical properties were investigated. The results show at the same sintering temperature, with the increase of yttrium oxide content, the relative density of the sintered alloy decreases and the strength increases. For Fe–2wt%Y2O3 alloy, as the sintering temperature increases gradually, the compressive strength decreases, while the strain-to-failure increases. The Fe–2wt%Y2O3 alloy with 15.5 nm Y2O3 particles uniformly distributed into the 147.5 nm iron grain interior sintered at 650°C presents a high ultimate compressive strength of 1.86 GPa and large strain-to-failure of 29%. The grain boundary strengthening and intragranular second-phase particle dispersion strengthening are the main dominant mechanisms to enhance the mechanical properties of the alloy.
    • loading
    • [1]
      D. Raabe, C.C. Tasan, and E.A. Olivetti, Strategies for improving the sustainability of structural metals, Nature, 575(2019), No. 7781, p. 64. doi: 10.1038/s41586-019-1702-5
      [2]
      X.Y. Li and K. Lu, Improving sustainability with simpler alloys, Science, 364(2019), No. 6442, p. 733. doi: 10.1126/science.aaw9905
      [3]
      Z.F. Lei, X.J. Liu, Y. Wu, et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563(2018), No. 7732, p. 546. doi: 10.1038/s41586-018-0685-y
      [4]
      J. Bauer, M. Sala-Casanovas, M. Amiri, and L. Valdevit, Nanoarchitected metal/ceramic interpenetrating phase composites, Sci. Adv., 8(2022), No. 33, art. No. eabo3080. doi: 10.1126/sciadv.abo3080
      [5]
      L.P. Xie, W.Y. Sun, J.L. Wang, M.H. Chen, and F.H. Wang, Improving strength and oxidation resistance of a Ni-based ODS alloy via in-situ solid-state reaction, Corros. Sci., 197(2022), art. No. 110078. doi: 10.1016/j.corsci.2021.110078
      [6]
      E.M.O. Lahcen, M.M.Á. Alcázar, and C.P. Almeida, New high strength ODS Eurofer steel processed by mechanical alloying, Mater. Sci. Eng. A, 817(2021), art. No. 141288. doi: 10.1016/j.msea.2021.141288
      [7]
      L.Y. Yao, Y.J. Huang, Y.M. Gao, et al., Hot deformation behavior of nanostructural oxide dispersion-strengthened (ODS) Mo alloy, Int. J. Refract. Met. Hard Mater, 107(2022), art. No. 105881. doi: 10.1016/j.ijrmhm.2022.105881
      [8]
      N. Oono, S. Ukai, S. Kondo, O. Hashitomi, and A. Kimura, Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors, J. Nucl. Mater., 465(2015), p. 835. doi: 10.1016/j.jnucmat.2015.06.057
      [9]
      F.N. Xiao, T. Barriere, G. Cheng, et al., Extremely uniform nanosized oxide particles dispersion strengthened tungsten alloy with high tensile and compressive strengths fabricated involving liquid-liquid method, J. Alloys Compd., 878(2021), art. No. 160335. doi: 10.1016/j.jallcom.2021.160335
      [10]
      J.H. Zhou, Y.F. Shen, and N. Jia, Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 335. doi: 10.1007/s12613-020-2121-1
      [11]
      A. Arora and S. Mula, Phase evolution characteristics, thermal stability, and strengthening processes of Fe–Ni based ODS invar steel produced by mechanical alloying and spark plasma sintering, Mater. Sci. Eng. A, 856(2022), art. No. 143972. doi: 10.1016/j.msea.2022.143972
      [12]
      P. Song, K. Yabuuchi, and P. Spätig, Insights into hardening, plastically deformed zone and geometrically necessary dislocations of two ion-irradiated FeCrAl(Zr)–ODS ferritic steels: A combined experimental and simulation study, Acta Mater., 234(2022), art. No. 117991. doi: 10.1016/j.actamat.2022.117991
      [13]
      P.K. Parida, A. Dasgupta, V. Srihari, et al., Structural investigations of Y2O3 dispersoids during mechanical milling and high-temperature annealing of Fe–15Y2O3xTi (x = 0–15) model ODS alloys, Adv. Powder Technol., 31(2020), No. 4, p. 1665. doi: 10.1016/j.apt.2020.02.002
      [14]
      M. Brocq, B. Radiguet, J.M. Le Breton, F. Cuvilly, P. Pareige, and F. Legendre, Nanoscale characterisation and clustering mechanism in an Fe–Y2O3 model ODS alloy processed by reactive ball milling and annealing, Acta Mater., 58(2010), No. 5, p. 1806. doi: 10.1016/j.actamat.2009.11.022
      [15]
      A. Mairov, D. Frazer, P. Hosemann, and K. Sridharan, Helium irradiation of Y2O3–Fe bilayer system, Scripta Mater., 162(2019), p. 156. doi: 10.1016/j.scriptamat.2018.11.006
      [16]
      R.P. Li, L.J. Gong, J.G. Lin, J.X. Lin, K. Wang, and Z.M. Shi, Structural evolution of Fe–Y2O3–Ti powder during ball-milling and thermal treatment, Ceram. Int., 45(2019), No. 16, p. 20011. doi: 10.1016/j.ceramint.2019.06.260
      [17]
      S.J. Wu, J. Li, C.J. Li, Y.Y. Li, L.Y. Xiong, and S. Liu, Preliminary study on the fabrication of 14Cr–ODS FeCrAl alloy by powder forging, J. Mater. Sci. Technol., 83(2021), p. 49. doi: 10.1016/j.jmst.2020.12.032
      [18]
      A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, and M.W. Chen, Atomic structure of nanoclusters in oxide-dispersion-strengthened steels, Nat. Mater., 10(2011), No. 12, p. 922. doi: 10.1038/nmat3150
      [19]
      S. Pasebani, A.K. Dutt, J. Burns, I. Charit, and R.S. Mishra, Oxide dispersion strengthened nickel based alloys via spark plasma sintering, Mater. Sci. Eng. A, 630(2015), p. 155. doi: 10.1016/j.msea.2015.01.066
      [20]
      I. Hilger, F. Bergner, and T. Weißgärber, Bimodal grain size distribution of nanostructured ferritic ODS Fe–Cr alloys, J. Am. Ceram. Soc., 98(2015), No. 11, p. 3576. doi: 10.1111/jace.13833
      [21]
      J. Fu, T.P. Davis, A. Kumar, I.M. Richardson, and M.J.M. Hermans, Characterisation of the influence of vanadium and tantalum on yttrium-based nano-oxides in ODS Eurofer steel, Mater. Charact., 175(2021), art. No. 111072. doi: 10.1016/j.matchar.2021.111072
      [22]
      Z. Dong, Z.Q. Ma, J. Dong, et al., The simultaneous improvements of strength and ductility in W–Y2O3 alloy obtained via an alkaline hydrothermal method and subsequent low temperature sintering, Mater. Sci. Eng. A, 784(2020), art. No. 139329. doi: 10.1016/j.msea.2020.139329
      [23]
      G. Liu, G.J. Zhang, F. Jiang, et al., Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility, Nat. Mater., 12(2013), No. 4, p. 344. doi: 10.1038/nmat3544
      [24]
      D.Y. Zhang, T. Wu, B.R. Jia, et al., Properties of intragranular-oxide-strengthened Fe alloys fabricated by a versatile facile and scalable route, Powder Technol., 384(2021), p. 9. doi: 10.1016/j.powtec.2021.02.009
      [25]
      L. Huang, L. Jiang, T.D. Topping, et al., In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure, Acta Mater., 122(2017), p. 19. doi: 10.1016/j.actamat.2016.09.034
      [26]
      V. Mihalache, I. Mercioniu, A. Velea, and P. Palade, Effect of the process control agent in the ball-milled powders and SPS-consolidation temperature on the grain refinement, density and Vickers hardness of Fe14Cr ODS ferritic alloys, Powder Technol., 347(2019), p. 103. doi: 10.1016/j.powtec.2019.02.006
      [27]
      A. Meza, E. Macía, P. Chekhonin, et al., The effect of composition and microstructure on the creep behaviour of 14 Cr ODS steels consolidated by SPS, Mater. Sci. Eng. A, 849(2022), art. No. 143441. doi: 10.1016/j.msea.2022.143441
      [28]
      M.L. Qin, D.Y. Zhang, G. Chen, et al., A double-nanophase intragranular-oxide-strengthened iron alloy with high strength and remarkable ductility, Metall. Mater. Trans. A, 50(2019), No. 3, p. 1103. doi: 10.1007/s11661-018-05099-4
      [29]
      J. Besson and A.G. Evans, The effect of reinforcements on the densification of a metal powder, Acta Metall. Mater., 40(1992), No. 9, p. 2247. doi: 10.1016/0956-7151(92)90143-3
      [30]
      B. Srinivasarao, K. Oh-ishi, T. Ohkubo, and K. Hono, Bimodally grained high-strength Fe fabricated by mechanical alloying and spark plasma sintering, Acta Mater., 57(2009), No. 11, p. 3277. doi: 10.1016/j.actamat.2009.03.034
      [31]
      R. Vijay, M. Nagini, J. Joardar, M. Ramakrishna, A.V. Reddy, and G. Sundararajan, Strengthening mechanisms in mechanically milled oxide-dispersed iron powders, Metall. Mater. Trans. A, 44(2013), No. 3, p. 1611. doi: 10.1007/s11661-012-1494-9
      [32]
      C.S. Smith, Grains, phases, and interfaces: An interpretation of microstructure, Trans. Metall. Soc. AIME, 175(1948), p. 15.
      [33]
      M.L. Qin, J.J. Yang, Z. Chen, et al., Preparation of intragranular-oxide-strengthened ultrafine-grained tungsten via low-temperature pressureless sintering, Mater. Sci. Eng. A, 774(2020), art. No. 138878. doi: 10.1016/j.msea.2019.138878
      [34]
      L. Jiang, H.M. Wen, H. Yang, et al., Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix, Acta Mater., 89(2015), p. 327. doi: 10.1016/j.actamat.2015.01.062
      [35]
      G. Gottstein and L.S. Shvindlerman, Theory of grain boundary motion in the presence of mobile particles, Acta Metall. Mater., 41(1993), No. 11, p. 3267. doi: 10.1016/0956-7151(93)90056-X
      [36]
      Z. Chen, M.L. Qin, J.J. Yang, L. Zhang, B.R. Jia, and X.H. Qu, Thermal stability and grain growth kinetics of ultrafine-grained W with various amount of La2O3 addition, Metall. Mater. Trans. A, 51(2020), No. 8, p. 4113. doi: 10.1007/s11661-020-05836-8
      [37]
      R. Vijay, M. Nagini, S.S. Sarma, M. Ramakrishna, A.V. Reddy, and G. Sundararajan, Structure and properties of nano-scale oxide-dispersed iron, Metall. Mater. Trans. A, 45(2014), No. 2, p. 777. doi: 10.1007/s11661-013-2019-x

    Catalog


    • /

      返回文章
      返回