Cite this article as: |
Chenmei Tang, Zhengqi Guo, Jian Pan, Deqing Zhu, Siwei Li, Congcong Yang, and Hongyu Tian, Current situation of carbon emissions and countermeasures in China’s ironmaking industry, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1633-1650. https://doi.org/10.1007/s12613-023-2632-7 |
郭正启 E-mail: guozqcsu@csu.edu.cn
[1] |
L. Li, Y.L. Lei, and D.Y. Pan, Study of CO2 emissions in China’s iron and steel industry based on economic input–output life cycle assessment, Nat. Hazards, 81(2016), No. 2, p. 957. doi: 10.1007/s11069-015-2114-y
|
[2] |
K. Jiang and P. Ashworth, The development of carbon capture utilization and storage (CCUS) research in China: A bibliometric perspective, Renewable Sustainable Energy Rev. 138(2021), art. No. 110521.
|
[3] |
IEA, Global CO2 Emissions Rebounded to Their Highest Level in History in 2021, 2022 [2023-05-05]. https://www.iea.org/news/global-co2-emissions-rebounded-to-their-highest-level-in-history-in-2021
|
[4] |
S.J. Zeng, Y.X. Lan, and J. Huang, Mitigation paths for Chinese iron and steel industry to tackle global climate change, Int. J. Greenhouse Gas Control, 3(2009), No. 6, p. 675. doi: 10.1016/j.ijggc.2009.06.001
|
[5] |
Y.L. Shan, D.B. Guan, H.R. Zheng, et al., China CO2 emission accounts 1997–2015, Sci. Data, 5(2018), art. No. 170201. doi: 10.1038/sdata.2017.201
|
[6] |
L. Dong, G.Y. Miao, and W.G. Wen, China’s carbon neutrality policy: Objectives, impacts and paths, East Asian Policy, 13(2021), No. 1, p. 5. doi: 10.1142/S1793930521000015
|
[7] |
J.P. Birat, Steel Sectoral Report: Contribution to the UNIDO Roadmap on CCS-fifth Draft, 2010 [2022-12-27]. https://www.globalccsinstitute.com/archive/hub/publications/15671/global-technology-roadmap-ccs-industry-steel-sectoral-report.pdf
|
[8] |
H.Y. Sohn, Energy consumption and CO2 emissions in ironmaking and development of a novel flash technology, Metals, 10(2019), No. 1, art. No. 54. doi: 10.3390/met10010054
|
[9] |
X. Lu, W.J. Tian, H. Li, X.J. Li, K. Quan, and H. Bai, Decarbonization options of the iron and steelmaking industry based on a three-dimensional analysis, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 388. doi: 10.1007/s12613-022-2475-7
|
[10] |
R.Y. An, B.Y. Yu, R. Li, and Y.M. Wei, Potential of energy savings and CO2 emission reduction in China’s iron and steel industry, Appl. Energy, 226(2018), p. 862. doi: 10.1016/j.apenergy.2018.06.044
|
[11] |
Z.Q. Guo, R.N. Zhan, Y. Shi, et al., Innovative, and green utilization of zinc-bearing dust by hydrogen reduction: Recovery of zinc and lead, and synergetic preparation of Fe/C micro-electrolysis materials, Chem. Eng. J., 456(2023), art. No. 141157. doi: 10.1016/j.cej.2022.141157
|
[12] |
A. Sane, G. Buragino, A. Makwana, and X.Y. He, Enhancing Direct Reduced Iron (DRI) for Use in Electric Steelmaking, Air Products and Chemicals, Inc., Allentown, PA, USA, 2021 [2022-12-27]. https://www.millennium-steel.com/enhancing-direct-reduced-iron-dri-for-use-in-electric-steelmaking
|
[13] |
B. Voraberger, G. Wimmer, U.D. Salgado, E. Wimmer, K. Pastucha, and A. Fleischanderl, Green LD (BOF) steelmaking—Reduced CO2 emissions via increased scrap rate, Metals, 12(2022), No. 3, art. No. 466. doi: 10.3390/met12030466
|
[14] |
R.Q. Wang, L. Jiang, Y.D. Wang, and A.P. Roskilly, Energy saving technologies and mass-thermal network optimization for decarbonized iron and steel industry: A review, J. Clean. Prod., 274(2020), art. No. 122997. doi: 10.1016/j.jclepro.2020.122997
|
[15] |
World Steel Association (WSA), World Steel in Figures 2022, World crude steel production 1950 to 2021 [2023-05-05]. https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2022
|
[16] |
C.B. Xu and D.Q Cang, A brief overview of low CO2 emission technologies for iron and steel making, J. Iron Steel Res. Int., 17(2010), No. 3, p. 1. doi: 10.1016/S1006-706X(10)60064-7
|
[17] |
J.C. He, China’s iron & steel industry and the global financial crisis, ISIJ Int., 51(2011), No. 5, p. 696. doi: 10.2355/isijinternational.51.696
|
[18] |
X.C. Tan, H. Li, J.X. Guo, B.H. Gu, and Y. Zeng, Energy-saving and emission-reduction technology selection and CO2 emission reduction potential of China’s iron and steel industry under energy substitution policy, J. Cleaner Prod., 222(2019), p. 823. doi: 10.1016/j.jclepro.2019.03.133
|
[19] |
X.L. Wang, Y.W. Wei, and Q.L. Shao, Decomposing the decoupling of CO2 emissions and economic growth in China’s iron and steel industry, Resour. Conserv. Recycl., 152(2020), art. No. 104509. doi: 10.1016/j.resconrec.2019.104509
|
[20] |
T. Ariyama and M. Sato, Optimization of ironmaking process for reducing CO2 emissions in the integrated steel works, ISIJ Int., 46(2006), No. 12, p. 1736. doi: 10.2355/isijinternational.46.1736
|
[21] |
H.M. Ahmed, E.A. Mousa, M. Larsson, and N.N. Viswanathan, Recent trends in ironmaking blast furnace technology to mitigate CO2 emissions: Top charging materials, [in] P. Cavaliere, ed. Ironmaking Steelmaking Processes, Springer, Cham., 2016, p. 101
|
[22] |
T. Ariyama, M. Sato, T. Nouchi, and K. Takahashi, Evolution of blast furnace process toward reductant flexibility and carbon dioxide mitigation in steel works, ISIJ Int., 56(2016), No. 10, p. 1681. doi: 10.2355/isijinternational.ISIJINT-2016-210
|
[23] |
J. Zhao, H.B. Zuo, Y.J. Wang, J.S. Wang, and Q.G. Xue, Review of green and low-carbon ironmaking technology, Ironmaking Steelmaking, 47(2020), No. 3, p. 296. doi: 10.1080/03019233.2019.1639029
|
[24] |
J.W. Bao, M.S. Chu, Z.G. Liu, D. Han, L.G. Cao, and J. Guo, Research progress on preparation and application of iron coke in blast furnace, Iron Steel, 55(2020), No. 8, p. 38.
|
[25] |
H.T. Wang, W. Zhao, M.S. Chu, Z.G. Liu, J. Tang, and Z.W. Ying, Effects of coal and iron ore blending on metallurgical properties of iron coke hot briquette, Powder Technol., 328(2018), p. 318. doi: 10.1016/j.powtec.2018.01.027
|
[26] |
H.T. Wang, M.S. Chu, Z.W. Ying, W. Zhao, Z.G. Liu, and J. Tang, Current status on ferro coke technology development, Sintering Pelletizing, 42(2017), No. 4, p. 44.
|
[27] |
H.T. Wang, M.S. Chu, J.W. Bao, D. Han, L.G. Cao, and W. Zhao, Research on preparation and application for a new burden of iron–carbon agglomerate for low carbon BF ironmaking, J. Iron Steel Res., 31(2019), No. 2, p. 103.
|
[28] |
X.M. He, X.C. Zeng, D. Zhang, X.H. Cheng, and S. Yi, Development of new materials for blast furnace blowing, Fuel Chem. Processes, 46(2015), No. 2, p. 12.
|
[29] |
Y.B. Chen and H.B. Zuo, Review of hydrogen-rich ironmaking technology in blast furnace, Ironmaking Steelmaking, 48(2021), No. 6, p. 749. doi: 10.1080/03019233.2021.1909992
|
[30] |
X.Y. Liu, X.Q. Mao, T. Bo, and X.Y. Gao, Industrial test of injecting coke oven gas in No.4 BF of Jigang Group Co., Ltd., Ironmaking, 38(2019), No. 2, p. 39.
|
[31] |
W. Zhang, J. Dai, C.Z. Li, X.B. Yu, Z.L. Xue, and H. Saxén, A review on explorations of the oxygen blast furnace process, Steel Res. Int., 92(2021), No. 1, art. No. 2000326. doi: 10.1002/srin.202000326
|
[32] |
Y. Zhou, H.J. Zhou, and C.M. Xu, Exploration of hydrogen sources for the low-carbon and green production in the steel industry in China, Chem. Ind. Eng. Prog., 41(2022), No. 2, p. 1073.
|
[33] |
CMISI Low-carbon Research Team, Hydrogen Metallurgy Research and Recent Development in China. Metallurgical Industry Information Standards Institute, 2021 [2022-12-30]. http://www.cmisi.com.cn/default/index/newsDetails?newsId=994
|
[34] |
R. Liu, Z.F. Zhang, X.J. Liu, X. Li, H.Y. Li, and Q. Lv, Development trend and prospect of low-carbon green ironmaking technology, Iron Steel, 57(2022), No. 5, p. 1.
|
[35] |
Y.L. Jin, Z.J. He, and C. Wang, Analysis on low carbon emission of blast furnace with different raw materials structure, Iron Steel, 54(2019), No. 7, p. 8.
|
[36] |
M.X. Xu and Y.L. Zhang, Analysis of pellet technology and production of China in 21st century, Sintering Pelletizing, 42(2017), No. 2, p. 25.
|
[37] |
Z.J. Liu, J.Q. Huang, J.L. Zhang, L.L. Niu, Y.Z. Wang, Development and practice of blast furnace high proportion pellet smelting technology, J. Univ. Sci. Technol. Liaoning, 44(2021), No. 2, p. 85.
|
[38] |
Mysteel, Mysteel: Domestic iron ore market review in the first half of 2022 and outlook for the second half, 2022 [2023-05-12]. https://news.mysteel.com/22/0715/15/ACFD7E1866AD4F83.html
|
[39] |
Mysteel, Mysteel iron ore series annual report: Pellet market review in 2018 and outlook in 2019, 2019 [2023-05-12]. https://tks.mysteel.com/19/0107/10/FC4E541F10B00E07.html
|
[40] |
China united steel united steel net, world pelletizing industry development report 2022, 2022 [2023-05-12]. https://www.zgltw.cn/m/view.php?aid=40012
|
[41] |
C.L Wang, Q. Quan, S.Q. Qi, Y.X. Zhao, Y.J. Cao, and P.C. Li, Study on design of high proportion pellet blast furnace [in] 2019 National Blast Furnace Ironmaking Academic Annual Conference, Guiyang, 2019, p. 295.
|
[42] |
C. Ramakgala and G. Danha, A review of ironmaking by direct reduction processes: Quality requirements and sustainability, Procedia Manuf., 35(2019), p. 242. doi: 10.1016/j.promfg.2019.05.034
|
[43] |
Y.J. Wang, H.B. Zuo, and J. Zhao, Recent progress and development of ironmaking in China as of 2019: An overview, Ironmaking Steelmaking, 47(2020), No. 6, p. 640. doi: 10.1080/03019233.2020.1794471
|
[44] |
Midrex Technologies Inc., 2021 world direct reduction statistics, 2022 [2023-05-05]. https://www.midrex.com/wp-content/uploads/MidrexSTATSBook2021.pdf
|
[45] |
X. Jiang, L. Wang, and F.M. Shen, Shaft furnace direct reduction technology—Midrex and energiron, Adv. Mater. Res., 805-806(2013), p. 654. doi: 10.4028/www.scientific.net/AMR.805-806.654
|
[46] |
D.S. Kumar and S. Rameshwar, Direct reduced iron: Production [in] R. Colás, G.E. Totten, E. Altschuler et al., eds., Encyclopedia of Iron, Steel, and Their Alloy, CRC Press, Florida, 2016, p. 1082.
|
[47] |
G.R. Li, The Chinese iron ore deposits and ore production, [In] V. Shatokha, ed., Iron Ores and Iron Oxide Materials, IntechOpen, 2018.
|
[48] |
J.N. Yin, M. Lindsay, and S.R. Teng, Mineral prospectivity analysis for BIF iron deposits: A case study in the Anshan-Benxi area, Liaoning province, north-east China, Ore Geol. Rev., 120(2020), art. No. 102746. doi: 10.1016/j.oregeorev.2018.11.019
|
[49] |
W. Chen and L.G. Zhang, Status quo and development trend of complex refractory iron ore beneficiation technology, Nonferrous Metal (Mineral Processing Section), S1(2013), No. 1, p. 19.
|
[50] |
X.F. Tang, Research status and development trend of beneficiation technology on complex hematite, Mod. Min., 30(2014), No. 3, p. 14.
|
[51] |
Y.M. Hu and Y. Zhang, Progress in research on beneficiation technology for Yuanjiacun iron ore, Met. Mine, 36(2007), No. 6, p. 25.
|
[52] |
J.C. Cao, L. Lu, F. Cao, and T.B. Yue, Experimental study on beneficiability of some low-grade iron ore in inner Mongolia, Min. Metall. Eng., 32(2012), No. 5, p. 37.
|
[53] |
Y.M. Hu and Y.X. Han, Study on the separation of the oxidized ore from Yuanjiacun iron mine, Met. Mine, 41(2012), No. 10, p. 65.
|
[54] |
Y. Yang, W.X. Zhang, G.F. Zhao, and S.Q. Ding, Process tests on a micro-fine and refractory iron ore, Nonferrous Met. Sci. Eng., 3(2012), No. 3, p. 70.
|
[55] |
Z.J. Fan, N.J. Cao, and Y.H. Rao, Investigation of mineral processing of a fine low-grade refractory iron ore, Met. Mine, 40(2011), No. 1, p. 51.
|
[56] |
W.T. Zhou, Y.X. Han, Y.S. Sun, and Y.J. Li, Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 443. doi: 10.1007/s12613-019-1897-3
|
[57] |
J.W. Yu, Y.X. Han, Y.J. Li, and P. Gao, Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade, Miner. Process. Extr. Metall. Rev., 41(2020), No. 5, p. 349. doi: 10.1080/08827508.2019.1634565
|
[58] |
J.H. Xiao and Y. Zhang, Experimental study on rotary magnetic roasting for a high-phosphorus oolitic hematite and limonite ore, Met. Mine, 39(2010), No. 3, p. 43.
|
[59] |
H.C. Li, Z. Shen, and X.Y. Liang, Rotary kiln magnetic roasting and magnetic separation test of powdery specularite ore, Min. Metall. Eng., No,6(2021), p. 89.
|
[60] |
Z.Z. Chen, M. Zhang, D. Wang, and Y.J. Mao, Experiment on rotary kiln magnetizing roasting-low intensity magnetic separation of a siderite-hematite mixture iron ore, Modern Min., 34(2018), No. 10, p. 109.
|
[61] |
S.H. Xue, G.S. Zhang, Y.J. Mao, H.B. Li, D. Wang, and H.T. Zhao, Research on magnetization roasting technology for siderite and limonite in rotary kiln, [in] The 8th CSM Steel Congress, Beijing, 2011.
|
[62] |
G.M. Shi, H.J. Chen, and C.B. Wu, Study on benefi ciation experiment of a refractory limonite from Yunnan, Min. Processing Equip., 41(2013), No. 8, p. 95.
|
[63] |
L.F. Luo, W. Chen, X.H. Yan, and Q.L. Wang, Pilot plant test of megnetization roasting of daxigou siderite ore by rotary kiln, Min. Metall. Eng., 2006, No. 2, p. 71.
|
[64] |
Z.D. Tang, P. Gao, Y.X. Han, and W.D. Guo, Fluidized bed roasting technology in iron ores dressing in China: A review on equipment development and application prospect, J. Min. Metall. Sect. B., 55(2019), No. 3, p. 295. doi: 10.2298/JMMB190520051T
|
[65] |
S.K. Roy, D. Nayak, and S.S. Rath, A review on the enrichment of iron values of low-grade iron ore resources using reduction roasting–magnetic separation, Powder Technol., 367(2020), p. 796. doi: 10.1016/j.powtec.2020.04.047
|
[66] |
Y.F. Yu and C.Y. Qi, Magnetizing roasting mechanism and effective ore dressing process for oolitic hematite ore, J. Wuhan Univ. Technol. Mater Sci. Ed., 26(2011), No. 2, p. 176. doi: 10.1007/s11595-011-0192-6
|
[67] |
Y.F. Yu and W. Chen, Application of flash magnetizing roasting technique in beneficiation of siderite and limonite, [in] The 2010 International Symposium on Project Management, Sanya, 2010, p. 13.
|
[68] |
X.Y. Liu, Y.F. Yu, Z.G. Hong, Z.Y. Peng, J.L. Li, and Q. Zhao, Development and application of flash (fluidized) magnetizing roasting technology for refractory weak magnetic iron ore, Min. Metall. Eng., 37(2017), No. 2, p. 40.
|
[69] |
Q.L. Wang, W. Chen, Y.F. Yu, Z.Y. Peng, X.S. Lu, and X.Y. Liu, Test research on the magnetization roasting quickly technology of a complex and refractory limonite ore, Conserv. Util. Miner. Resour., 2010, No. 3, p. 27.
|
[70] |
Q.S. Zhu and H.Z. Li, Status quo and development prospect of magnetizing roasting via fluidized bed for low grade iron ore, CIESC J., 65(2014), No. 7, p. 2437.
|
[71] |
Y.J. Li, R. Wang, Y.X. Han, and X.C. Wei, Phase transformation in suspension roasting of oolitic hematite ore, J. Cent. South Univ., 22(2015), No. 12, p. 4560. doi: 10.1007/s11771-015-3006-8
|
[72] |
Y.X. Han, Y.J. Li, P. Gao, J.W. Yu, Innovative and efficient beneficiation technology of refractoryiron ores based on suspended magnetization roasting, J. Iron Steel Res., 31(2019), No. 2, p. 6.
|
[73] |
D.C. Kong, J. Liu, S.M. Zhang, and Y.J. Li, Experimental study on suspension magnetization roasting-magnetic separation of an iron ore, Multipurpose Util. Miner. Resour., 2022, No. 5, p. 130.
|
[74] |
C. Chen, Y.J. Li, Y.S. Zhang, R. Wang, and Y.X. Han, Study on suspension roasting for oolitic hematite, Multipurpose Util. Miner. Resour., 2013, No. 6, p. 30.
|
[75] |
S. Yuan, Y.X. Han, P. Gao, Y.J. Li, and Y.S. Sun, Research status and development of suspension roasting for refractory iron ore, Met. Mine, 2016, No. 12, p. 9.
|
[76] |
X.L. Zhang, Y.X. Han, Y.S. Sun, and Y.J. Li, Innovative utilization of refractory iron ore via suspension magnetization roasting: A pilot-scale study, Powder Technol., 352(2019), p. 16. doi: 10.1016/j.powtec.2019.04.042
|
[77] |
V. Nunna, S. Hapugoda, M.I. Pownceby, and G.J. Sparrow, Beneficiation of low-grade, goethite-rich iron ore using microwave-assisted magnetizing roasting, Miner. Eng., 166(2021), art. No. 106826. doi: 10.1016/j.mineng.2021.106826
|
[78] |
W.T. Zhou, Y.S. Sun, Y.X. Han, P. Gao, and Y.J. Li, Mechanism of microwave assisted suspension magnetization roasting of oolitic hematite ore, J. Cent. South Univ., 29(2022), No. 2, p. 420. doi: 10.1007/s11771-022-4937-5
|
[79] |
S.K. Roy, D. Nayak, N. Dash, N. Dhawan, and S.S. Rath, Microwave-assisted reduction roasting—Magnetic separation studies of two mineralogically different low-grade iron ores, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1449. doi: 10.1007/s12613-020-1992-5
|
[80] |
Y.S. Sun, Q. Zhang, Y.X. Han, P. Gao, and G.F. Li, Comprehensive utilization of iron and phosphorus from high-phosphorus refractory iron ore, JOM, 70(2018), No. 2, p. 144. doi: 10.1007/s11837-017-2637-7
|
[81] |
K.Q. Li, S. Ping, H.Y. Wang, and W. Ni, Recovery of iron from copper slag by deep reduction and magnetic beneficiation, Int. J. Miner. Metall. Mater., 20(2013), No. 11, p. 1035. doi: 10.1007/s12613-013-0831-3
|
[82] |
Q. Zhang, Y.S. Sun, Y.X. Han, Y.J. Li, and P. Gao, Review on coal-based reduction and magnetic separation for refractory iron-bearing resources, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2087. doi: 10.1007/s12613-021-2408-x
|
[83] |
R. Mao, F. Wang, H. Jin, Z.W. Zhang, and L.J. Shi, Experimental research on grinding rich ore powder originally used for sintering to prepare pellet, Sintering Pelletizing, 47(2022), No. 2, p. 24.
|
[84] |
D.S. Peng, J. Pan, J. Li, et al., Experimental research on preparation of fluxed pellets from fine grinding Carajas powder, Sintering Pelletizing, 46(2021), No. 4, p. 50.
|
[85] |
D.Q. Zhu, Z.J. Huang, C.C. Yang, J. Pan, and Z.Q. Guo, Research on production of oxidized pellets from GF88 hematite concentrate, Sintering Pelletizing, 45(2020), No. 6, p. 61.
|
[86] |
H.Y. Tian, J. Pan, D.Q. Zhu, D.Z. Wang, and Y.X. Xue, Utilization of ground sinter feed for oxidized pellet production and its effect on pellet consolidation and metallurgical properties, [in] Z.W. Peng. J.Y. Hwang, J. P. Downey, et al. eds., 11th International Symposium on High-Temperature Metallurgical Processing. The Minerals, Metals & Materials Series. Springer, Cham, 2020, p. 857.
|
[87] |
L. Ma, G.L. Qing, Y.Q. Tian, L.Y. Zhao, and Y. Zhang, Experimental study on pelletizing proportioned with grinded MAC fines, Sintering and Pelletizing, 44(2019), No. 2, p. 39.
|
[88] |
Y. Zhang, X.J. Wu, H.L. Niu, et al., Study on sinter iron ores and titanium ores used in pelletizing, [in] Characterization of Minerals, Metals, and Materials 2021, The Minerals, Metals & Materials Series. Springer, Cham., 2021 p. 155.
|
[89] |
R.M. Papini, P.R.G. Brandão, and A.E.C. Peres, Cationic flotation of iron ores: Amine characterization and performance, Min. Metall. Explor., 18(2001), No. 1, p. 5.
|
[90] |
Y.M. Zhu, P. Wang, Y.P. Yang, Y.X. Han, and Y.J. Li, Application of cationic collector DYP in iron ores reverse flotation, Met. Mine, 2015, No. 6, p. 83.
|
[91] |
Y.P. Yang, Study on Flotation of Donganshan Iron Ore with New Cationic Collector [Dissertation], Northeastern University, Shenyang, 2014.
|
[92] |
Y.M. Zhu, J.L. Chen, J.W. Jia, and S.G. Liu, Investigation to flotation of quartz with new cation collector DBA-2, Multipurpose Util. Miner. Resour., 9(2015), No. 2, p. 39.
|
[93] |
Y.M. Zhu, J.L. Chen, J.W. Jia, and S.A. Liu, Collecting performance and mechanism of a new cation collector to quartz, Met. mine, 44(2015), No. 5, p. 81.
|
[94] |
Z. Lei, G.J. Mei, X.Y. Zhu, M.M. Yu, and N. Liu, Performance of a new low-temperature-resistant cationic collector in mineral flotation, J. China Univ. Min. Technol., 44(2015), No. 5, p. 917.
|
[95] |
Z.Y.Y. Cheng, Y.M. Zhu, Y.J. Li, and Y.X. Han, Flotation and adsorption of quartz with the new collector butane-3-heptyloxy-1, 2-diamine, Mineral. Petrol., 113(2019), No. 2, p. 207. doi: 10.1007/s00710-018-0639-y
|
[96] |
W.B. Liu, W.G. Liu, B. Zhao, et al., Novel insights into the adsorption mechanism of the isopropanol amine collector on magnesite ore: A combined experimental and theoretical computational study, Powder Technol., 343(2019), p. 366. doi: 10.1016/j.powtec.2018.11.063
|
[97] |
Y.Y. Ge, J. Yu, and P.C. Zhu, Review of flotation reagents for iron ore, Modern Min., 11(2009), p. 6.
|
[98] |
X.Q. Weng, G.J. Mei, T.T. Zhao, and Y. Zhu, Utilization of novel ester-containing quaternary ammonium surfactant as cationic collector for iron ore flotation, Sep. Purif. Technol., 103(2013), p. 187. doi: 10.1016/j.seppur.2012.10.015
|
[99] |
Z.Q. Huang, H. Zhong, S. Wang, L.Y. Xia, W.B. Zou, and G.Y. Liu, Investigations on reverse cationic flotation of iron ore by using a Gemini surfactant: Ethane-1, 2-bis(dimethyl-dodecyl-ammonium bromide), Chem. Eng. J., 257(2014), p. 218. doi: 10.1016/j.cej.2014.07.057
|
[100] |
Y.M. Zhu, B.B. Luo, C.Y. Sun, et al., Density functional theory study of α-Bromolauric acid adsorption on the α-quartz (101) surface, Miner. Eng., 92(2016), p. 72. doi: 10.1016/j.mineng.2016.03.007
|
[101] |
J. Liu, J.Q. Zhang, and J.T. Liu, Status quo of iron ores flotation reagent, China Min. Mag., 16(2007), No. 2, p. 106.
|
[102] |
C. Min, X.M. Hu, and H.Q. Zhang, Application of mixed anion collector in reverse flotation of high phosphorus oolitic hematite, Min. Metall. Eng., 37(2017), No. 2, p. 49.
|
[103] |
R. Cui and X.L. Deng, Experimental study on flotation performance of a novelfatty acid collector, Conserv. Util. Miner. Resour., 2018, No. 6, p. 46.
|
[104] |
Z.D. Tang, P. Gao, Y.S. Sun, et al., Studies on the fluidization performance of a novel fluidized bed reactor for iron ore suspension roasting, Powder Technol., 360(2020), p. 649. doi: 10.1016/j.powtec.2019.09.092
|
[105] |
B.B. Luo, Y.M. Zhu, C.Y. Sun, Y.J. Li, and Y.X. Han, Flotation and adsorption of a new collector α-Bromodecanoic acid on quartz surface, Miner. Eng., 77(2015), p. 86. doi: 10.1016/j.mineng.2015.03.003
|
[106] |
L.J. Xiao, Research on Production of High Purity Iron Concentrates by Reverse Flotation Using Anionic Collector [Dissertation], Northeastern University, Shenyang, 2016.
|
[107] |
J. Fang, Y.Y. Ge, S.B. Liu, J. Yu, and C. Liu, Investigations on a novel collector for anionic reverse flotation separation of quartz from iron ores, Physicochem. Probl. Miner. Process., 57(2021), No. 1, p. 136.
|
[108] |
B.B. Luo, Y.M. Zhu, C.Y. Sun, Y.J. Li, and Y.X. Han, Reverse flotation of iron ore using amphoteric surfactant: 2-((2-(decyloxy)ethyl)amino)lauric acid, Physicochem. Probl. Miner. Process., 57(2021), No. 3, p. 73. doi: 10.37190/ppmp/135441
|
[109] |
Y.Y. Ge, J. Yu, Y.X. Chen, S.H. Guo, and P.C. Zhu, Study on reverse flotation of impurities containing silicon and sulfur in iron ore with new reagent MG, Conserv. Util. Miner. Resour., 2010, No. 1, p. 33.
|
[110] |
K. Ogino and M. Abe, Mixed Surfactant Systems, CRC Press, Florida, 1992.
|
[111] |
B. Feng, L.Z. Zhang, W.P. Zhang, H.H. Wang, and Z.Y. Gao, Mechanism of calcium lignosulfonate in apatite and dolomite flotation system, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1697. doi: 10.1007/s12613-021-2313-3
|
[112] |
Y. Chen, B. Xu, M. Li, T.L. Zhao, and M.Z. Zhang, Application and mechanism of XK-28 combined collector in desilication of iron ore, Multipurpose Util. Miner. Resour., 2021, No. 3, p. 43.
|
[113] |
D. Lu, Y. Hu, Y. Li, T. Jiang, and Y. Wang, Reverse flotation of ultrafine magnetic concentrate by using mixed anionic/cationic collectors, Physicochem. Probl. Miner. Process., 53(2017), No. 2, p. 724.
|
[114] |
J. Tian, L.H. Xu, Y.H. Yang, J. Liu, X.B. Zeng, and W. Deng, Selective flotation separation of ilmenite from titanaugite using mixed anionic/cationic collectors, Int. J. Miner. Process., 166(2017), p. 102. doi: 10.1016/j.minpro.2017.07.006
|
[115] |
Z.C. Yang, Q. Teng, J. Liu, W.P. Yang, D.H. Hu, and S.Y. Liu, Use of NaOl and CTAB mixture as collector in selective flotation separation of enstatite and magnetite, Colloids Surf. A, 570(2019), p. 481. doi: 10.1016/j.colsurfa.2019.03.064
|
[116] |
K. Hanumantha Rao and K.S.E. Forssberg, Mixed collector systems in flotation, Int. J. Miner. Process., 51(1997), No. 1-4, p. 67. doi: 10.1016/S0301-7516(97)00039-2
|
[117] |
W.B. Liu, W.X. Huang, F. Rao, Z.L. Zhu, Y.M. Zheng, and S.M. Wen, Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 446. doi: 10.1007/s12613-021-2321-3
|
[118] |
J.Z. Cai, J.S. Deng, L. Wang, et al., Reagent types and action mechanisms in ilmenite flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1656. doi: 10.1007/s12613-021-2380-5
|
[119] |
L.M. Ma, J.L. Zhang, Y.Z. Wang, et al., Mixed burden softening-melting property optimization based on high-silica fluxed pellets, Powder Technol., 412(2022), art. No. 117979. doi: 10.1016/j.powtec.2022.117979
|