留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1120
  • HTML全文浏览量:  452
  • PDF下载量:  53
  • 被引次数: 0
Naiqi Chen, Quan Li, Youcao Ma, Kunming Yang, Jian Song, Yue Liu, and Tongxiang Fan, Significant strengthening of copper-based composites using boron nitride nanotubes, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1764-1778. https://doi.org/10.1007/s12613-023-2633-6
Cite this article as:
Naiqi Chen, Quan Li, Youcao Ma, Kunming Yang, Jian Song, Yue Liu, and Tongxiang Fan, Significant strengthening of copper-based composites using boron nitride nanotubes, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1764-1778. https://doi.org/10.1007/s12613-023-2633-6
引用本文 PDF XML SpringerLink
研究论文

氮化硼纳米管显著增强铜基复合材料


  • 通讯作者:

    刘悦    E-mail: yliu23@sjtu.edu.cn

    范同祥    E-mail: txfan@sjtu.edu.cn

文章亮点

  • (1)确定BNNTs最佳制备参数,阐明相关生长机制。
  • (2)对比3vol.% BNNTs/Cu和3vol.%CNTs/Cu复合材料室温 (293K)和高温力学性能(873K),发现两者室温性能相近,但高温性能前者显著优于后者。
  • (3) 通过分析相关增强机制,我们将BNNT/Cu的优异高温力学性能归因于其更强的层间界面剪切强度和界面结合强度,因此具有更高的载荷传递效率。
  • 氮化硼纳米管(BNNTs)和碳纳米管(CNTs)具有优异的力学和物理性能,与CNTs相比,BNNTs具有更强的层间剪切强度和较高的温度稳定性,意味着BNNTs具有更好的增强效果。然而,由于缺乏高质量的BNNTs合成方法,目前BNNTs增强铜(Cu)基复合材料的力学性能和增强机制缺乏研究。因此,本文以氧化锂和硼粉作为原料,通过球磨和退火的方法制备了高质量的BNNTs,研究了BNNTs的最佳合成参数和生长机制,即经典的气相-液相-固相合成机制。通过球磨、放电离子体烧结和热轧工艺成功制备了分散良好的3vol.%BNNTs/Cu和3vol.%CNTs/Cu。对比研究了294 K至893 K温度下BNNTs/Cu和CNTs/Cu的拉伸性能和增强机制。在293 K时,BNNTs/Cu和CNTs/Cu的极限拉伸性能接近,达到约404 MPa,比纯Cu高出约171%。然而,在893 K时,BNNTs/Cu的极限拉伸性能和屈服性能分别比CNTs/Cu高出27%和29%。通过定量研究和对比了BNNTs/Cu和CNTs/Cu的载荷传递增强、细晶强化增强、位错密度增强和残余热应力增强四种增强机制,我们认为BNNTs比CNTs具有更强的层间剪切强度和界面结合强度,以及更高的载荷传递效率。
  • Research Article

    Significant strengthening of copper-based composites using boron nitride nanotubes

    + Author Affiliations
    • Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol% BNNTs/Cu and 3vol% CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K, both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of ~404 MPa, which is approximately 170% higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27% and 29% higher than those of CNTs/Cu, respectively. This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature.
    • loading
    • [1]
      S.Z. Han, E.A. Choi, S.H. Lim, S. Kim, and J. Lee, Alloy design strategies to increase strength and its trade-offs together, Prog. Mater. Sci., 117(2021), art. No. 100720. doi: 10.1016/j.pmatsci.2020.100720
      [2]
      A. Azarniya, A. Azarniya, S. Sovizi, et al., Physicomechanical properties of spark plasma sintered carbon nanotube-reinforced metal matrix nanocomposites, Prog. Mater. Sci., 90(2017), p. 276. doi: 10.1016/j.pmatsci.2017.07.007
      [3]
      X. Zhang, N.Q. Zhao, and C.N. He, The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design – A review, Prog. Mater. Sci., 113(2020), art. No. 100672. doi: 10.1016/j.pmatsci.2020.100672
      [4]
      P.J.F. Harris, Carbon nanotube composites, Int. Mater. Rev., 49(2004), No. 1, p. 31. doi: 10.1179/095066004225010505
      [5]
      S. Iijima, Helical microtubules of graphitic carbon, Nature, 354(1991), No. 6348, p. 56. doi: 10.1038/354056a0
      [6]
      S.R. Bakshi, D. Lahiri, and A. Agarwal, Carbon nanotube reinforced metal matrix composites – A review, Int. Mater. Rev., 55(2010), No. 1, p. 41. doi: 10.1179/095066009X12572530170543
      [7]
      L.Q. Xiong, K.W. Liu, J. Shuai, Z.C. Hou, L. Zhu, and W.Z. Li, Toward high strength and high electrical conductivity in super-aligned carbon nanotubes reinforced copper, Adv. Eng. Mater., 20(2018), No. 5, art. No. 1700805. doi: 10.1002/adem.201700805
      [8]
      L.L. Meng, X.J. Wang, J.L. Ning, X.S. Hu, G.H. Fan, and K. Wu, Beyond the dimensional limitation in bio-inspired composite: Insertion of carbon nanotubes induced laminated Cu composite and the simultaneously enhanced strength and toughness, Carbon, 130(2018), p. 222. doi: 10.1016/j.carbon.2018.01.006
      [9]
      S.J. Yoo, S.H. Han, and W.J. Kim, A combination of ball milling and high-ratio differential speed rolling for synthesizing carbon nanotube/copper composites, Carbon, 61(2013), p. 487. doi: 10.1016/j.carbon.2013.04.105
      [10]
      L.L. Meng, X.J. Wang, X.S. Hu, H.L. Shi, and K. Wu, Role of structural parameters on strength–ductility combination of laminated carbon nanotubes/copper composites, Compos. Part A, 116(2019), p. 138. doi: 10.1016/j.compositesa.2018.10.021
      [11]
      H. Deng, J.H. Yi, C. Xia, and Y. Yi, Mechanical properties and microstructure characterization of well-dispersed carbon nanotubes reinforced copper matrix composites, J. Alloys Compd., 727(2017), p. 260. doi: 10.1016/j.jallcom.2017.08.131
      [12]
      B.H. Duan, Y. Zhou, D.Z. Wang, and Y.R. Zhao, Effect of CNTs content on the microstructures and properties of CNTs/Cu composite by microwave sintering, J. Alloys Compd., 771(2019), p. 498. doi: 10.1016/j.jallcom.2018.08.315
      [13]
      L. Liu, R. Bao, J.H. Yi, and D. Fang, Fabrication of CNT/Cu composites with enhanced strength and ductility by SP combined with optimized SPS method, J. Alloys Compd., 747(2018), p. 91. doi: 10.1016/j.jallcom.2018.03.029
      [14]
      P. Yang, X. You, J.H. Yi, et al., Simultaneous achievement of high strength, excellent ductility, and good electrical conductivity in carbon nanotube/copper composites, J. Alloys Compd., 752(2018), p. 431. doi: 10.1016/j.jallcom.2018.03.341
      [15]
      M.R. Akbarpour, Analysis of load transfer mechanism in Cu reinforced with carbon nanotubes fabricated by powder metallurgy route, J. Mater. Eng. Perform., 25(2016), No. 5, p. 1749. doi: 10.1007/s11665-016-2042-3
      [16]
      B.K. Lim, C.B. Mo, D.H. Nam, and S.H. Hong, Mechanical and electrical properties of carbon nanotube/Cu nanocomposites by molecular-level mixing and controlled oxidation process, J. Nanosci. Nanotechnol., 10(2010), No. 1, p. 78. doi: 10.1166/jnn.2010.1521
      [17]
      Z.W. Xue, L.D. Wang, P.T. Zhao, S.C. Xu, J.L. Qi, and W.D. Fei, Microstructures and tensile behavior of carbon nanotubes reinforced Cu matrix composites with molecular-level dispersion, Mater. Des., 34(2012), p. 298. doi: 10.1016/j.matdes.2011.08.021
      [18]
      H. Deng, J.H. Yi, C. Xia, and Y. Yi, Improving the mechanical properties of carbon nanotube-reinforced pure copper matrix composites by spark plasma sintering and hot rolling, Mater. Lett., 210(2018), p. 177. doi: 10.1016/j.matlet.2017.09.030
      [19]
      X.F. Chen, J.M. Tao, J.H. Yi, et al., Balancing the strength and ductility of carbon nanotubes reinforced copper matrix composites with microlaminated structure and interdiffusion interface, Mater. Sci. Eng. A, 712(2018), p. 790. doi: 10.1016/j.msea.2017.12.044
      [20]
      X.F. Chen, J.M. Tao, J.H. Yi, Y.C. Liu, C.J. Li, and R. Bao, Strengthening behavior of carbon nanotube–graphene hybrids in copper matrix composites, Mater. Sci. Eng. A, 718(2018), p. 427. doi: 10.1016/j.msea.2018.02.006
      [21]
      J.P. Liu, D.B. Xiong, Z.Q. Tan, et al., Enhanced mechanical properties and high electrical conductivity in multiwalled carbon nanotubes reinforced copper matrix nanolaminated composites, Mater. Sci. Eng. A, 729(2018), p. 452. doi: 10.1016/j.msea.2018.05.091
      [22]
      N. Nayan, A.K. Shukla, P. Chandran, et al., Processing and characterization of spark plasma sintered copper/carbon nanotube composites, Mater. Sci. Eng. A, 682(2017), p. 229. doi: 10.1016/j.msea.2016.10.114
      [23]
      H. Wang, Z.H. Zhang, Z.Y. Hu, et al., Improvement of interfacial interaction and mechanical properties in copper matrix composites reinforced with copper coated carbon nanotubes, Mater. Sci. Eng. A, 715(2018), p. 163. doi: 10.1016/j.msea.2018.01.005
      [24]
      X.H. Wang, B.S. Guo, S. Ni, J.H. Yi, and M. Song, Acquiring well balanced strength and ductility of Cu/CNTs composites with uniform dispersion of CNTs and strong interfacial bonding, Mater. Sci. Eng. A, 733(2018), p. 144. doi: 10.1016/j.msea.2018.07.046
      [25]
      S. Zhao, Z. Zheng, Z.X. Huang, et al., Cu matrix composites reinforced with aligned carbon nanotubes: Mechanical, electrical and thermal properties, Mater. Sci. Eng. A, 675(2016), p. 82. doi: 10.1016/j.msea.2016.08.044
      [26]
      Y.H. Li, W. Housten, Y.M. Zhao, and Y.Q. Zhu, Cu/single-walled carbon nanotube laminate composites fabricated by cold rolling and annealing, Nanotechnology, 18(2007), No. 20, art. No. 205607. doi: 10.1088/0957-4484/18/20/205607
      [27]
      C.H. Guo, Z.J. Zhan, and D.D. Zhang, Influence of different preparation processes on the mechanical properties of carbon nanotube-reinforced copper matrix composites, Strength Mater., 47(2015), No. 1, p. 143. doi: 10.1007/s11223-015-9640-4
      [28]
      B. Chen, S.F. Li, H. Imai, et al., Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in situ tensile tests, Compos. Sci. Technol., 113(2015), p. 1. doi: 10.1016/j.compscitech.2015.03.009
      [29]
      R. George, K.T. Kashyap, R. Rahul, and S. Yamdagni, Strengthening in carbon nanotube/aluminium (CNT/Al) composites, Scripta Mater., 53(2005), No. 10, p. 1159. doi: 10.1016/j.scriptamat.2005.07.022
      [30]
      K.T. Kim, J. Eckert, S.B. Menzel, T. Gemming, and S.H. Hong, Grain refinement assisted strengthening of carbon nanotube reinforced copper matrix nanocomposites, Appl. Phys. Lett., 92(2008), No. 12, art. No. 121901. doi: 10.1063/1.2899939
      [31]
      Z.Y. Liu, B.L. Xiao, W.G. Wang, and Z.Y. Ma, Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing, Carbon, 50(2012), No. 5, p. 1843. doi: 10.1016/j.carbon.2011.12.034
      [32]
      D.H. Nam, S.I. Cha, B.K. Lim, H.M. Park, D.S. Han, and S.H. Hong, Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al–Cu composites, Carbon, 50(2012), No. 7, p. 2417. doi: 10.1016/j.carbon.2012.01.058
      [33]
      F. Mokdad, D.L. Chen, Z.Y. Liu, B.L. Xiao, D.R. Ni, and Z.Y. Ma, Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite, Carbon, 104(2016), p. 64. doi: 10.1016/j.carbon.2016.03.038
      [34]
      J.G. Park, D.H. Keum, and Y.H. Lee, Strengthening mechanisms in carbon nanotube-reinforced aluminum composites, Carbon, 95(2015), p. 690. doi: 10.1016/j.carbon.2015.08.112
      [35]
      Z. Trojanová, V. Gärtnerová, P. Lukáč, and Z. Drozd, Mechanical properties of Mg alloys composites reinforced with short Saffil® fibres, J. Alloys Compd., 378(2004), No. 1-2, p. 19. doi: 10.1016/j.jallcom.2003.12.047
      [36]
      W. Chen, H.C. Cheng, and Y. Hsu, Mechanical properties of carbon nanotubes using molecular dynamics simulations with the inlayer van der Waals interactions, Cmes Comp. Model. Eng. Sci., 20(2007), p. 123.
      [37]
      Y. Yan, X.Q. He, L.X. Zhang, and Q. Wang, Flow-induced instability of double-walled carbon nanotubes based on an elastic shell model, J. Appl. Phys., 102(2007), No. 4, art. No. 044307. doi: 10.1063/1.2763955
      [38]
      J. Cumings and A. Zettl, Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science, 289(2000), No. 5479, p. 602. doi: 10.1126/science.289.5479.602
      [39]
      M. Estili and A. Kawasaki, Engineering strong intergraphene shear resistance in multi-walled carbon nanotubes and dramatic tensile improvements, Adv. Mater., 22(2010), No. 5, p. 607. doi: 10.1002/adma.200902140
      [40]
      X.L. Wei, M.S. Wang, Y. Bando, and D. Golberg, Tensile tests on individual multi-walled boron nitride nanotubes, Adv. Mater., 22(2010), No. 43, p. 4895. doi: 10.1002/adma.201001829
      [41]
      V. Verma, V.K. Jindal, and K. Dharamvir, Elastic moduli of a boron nitride nanotube, Nanotechnology, 18(2007), No. 43, art. No. 435711. doi: 10.1088/0957-4484/18/43/435711
      [42]
      E.S. Oh, Elastic properties of various boron–nitride structures, Met. Mater. Int., 17(2011), No. 1, p. 21. doi: 10.1007/s12540-011-0204-2
      [43]
      X. Zhou, D.M. Tang, M. Mitome, Y. Bando, T. Sasaki, and D. Golberg, Intrinsic and defect-related elastic moduli of boron nitride nanotubes as revealed by in situ transmission electron microscopy, Nano Lett., 19(2019), No. 8, p. 4974. doi: 10.1021/acs.nanolett.9b01170
      [44]
      R. Arenal, X. Blase, and A. Loiseau, Boron–nitride and boron-carbonitride nanotubes: Synthesis, characterization and theory, Adv. Phys., 59(2010), No. 2, p. 101. doi: 10.1080/00018730903562033
      [45]
      C.Y. Zhi, Y. Bando, C.C. Tang, and D. Golberg, Boron nitride nanotubes, Mater. Sci. Eng., 70(2010), No. 3-6, p. 92. doi: 10.1016/j.mser.2010.06.004
      [46]
      N. Kostoglou, C. Tampaxis, G. Charalambopoulou, et al., Boron nitride nanotubes versus carbon nanotubes: A thermal stability and oxidation behavior study, Nanomaterials, 10(2020), No. 12, p. 2435. doi: 10.3390/nano10122435
      [47]
      J. Garel, I. Leven, C.Y. Zhi, et al., Ultrahigh torsional stiffness and strength of boron nitride nanotubes, Nano Lett., 12(2012), No. 12, p. 6347. doi: 10.1021/nl303601d
      [48]
      M. Yamaguchi, D.M. Tang, C.Y. Zhi, Y. Bando, D. Shtansky, and D. Golberg, Synthesis, structural analysis and in situ transmission electron microscopy mechanical tests on individual aluminum matrix/boron nitride nanotube nanohybrids, Acta Mater., 60(2012), No. 17, p. 6213. doi: 10.1016/j.actamat.2012.07.066
      [49]
      A. Niguès, A. Siria, P. Vincent, P. Poncharal, and L. Bocquet, Ultrahigh interlayer friction in multiwalled boron nitride nanotubes, Nat. Mater., 13(2014), No. 7, p. 688. doi: 10.1038/nmat3985
      [50]
      A. Falin, Q.R. Cai, E.J.G. Santos, et al., Mechanical properties of atomically thin boron nitride and the role of interlayer interactions, Nat. Commun., 8(2017), art. No. 15815. doi: 10.1038/ncomms15815
      [51]
      T. Dumitrică and B.I. Yakobson, Rate theory of yield in boron nitride nanotubes, Phys. Rev. B, 72(2005), No. 3, art. No. 035418. doi: 10.1103/PhysRevB.72.035418
      [52]
      P. Nautiyal, C. Zhang, A. Loganathan, B. Boesl, and A. Agarwal, High-temperature mechanics of boron nitride nanotube “buckypaper” for engineering advanced structural materials, ACS Appl. Nano Mater., 2(2019), No. 7, p. 4402. doi: 10.1021/acsanm.9b00817
      [53]
      M. Antillon, P. Nautiyal, A. Loganathan, B. Boesl, and A. Agarwal, Strengthening in boron nitride nanotube reinforced aluminum composites prepared by roll bonding, Adv. Eng. Mater., 20(2018), No. 8, art. No. 1800122. doi: 10.1002/adem.201800122
      [54]
      Z.Y. Cong and S. Lee, Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations, Compos. Struct., 194(2018), p. 80. doi: 10.1016/j.compstruct.2018.03.103
      [55]
      P. Ahmad, M.U. Khandaker, Z.R. Khan, and Y.M. Amin, Synthesis of boron nitride nanotubes via chemical vapour deposition: A comprehensive review, RSC Adv., 5(2015), No. 44, p. 35116. doi: 10.1039/C5RA01594D
      [56]
      T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, and W.E. Buhro, Solution–liquid–solid growth of crystalline III–V semiconductors: An analogy to vapor–liquid–solid growth, Science, 270(1995), No. 5243, p. 1791. doi: 10.1126/science.270.5243.1791
      [57]
      K.L. Jiang, C. Feng, K. Liu, and S.S. Fan, A vapor–liquid–solid model for chemical vapor deposition growth of carbon nanotubes, J. Nanosci. Nanotechnol., 7(2007), No. 4, p. 1494. doi: 10.1166/jnn.2007.332
      [58]
      O.R. Lourie, C.R. Jones, B.M. Bartlett, P.C. Gibbons, R.S. Ruoff, and W.E. Buhro, CVD growth of boron nitride nanotubes, Chem. Mater., 12(2000), No. 7, p. 1808. doi: 10.1021/cm000157q
      [59]
      X.Y. Long and J. Wu, Progress in synthesis of boron nitride nanotube, New Chem. Mater., 46(2018), No. 4, p. 16.
      [60]
      O.N. Carlson, R.R. Lichtenberg, and J.C. Warner, Solid solubilities of oxygen, carbon and nitrogen in yttrium, J. Less Common Met., 35(1974), No. 2, p. 275. doi: 10.1016/0022-5088(74)90238-0
      [61]
      K. Qian, B. Chen, P.X. Zhao, M.S. Zhang, and K. Liu, Solubility of nitrogen in liquid Ni, Ni–Nb, Ni–Cr–Nb, Ni–Fe–Nb, and Ni–Cr–Fe–Nb systems, ISIJ Int., 59(2019), No. 12, p. 2220. doi: 10.2355/isijinternational.ISIJINT-2019-187
      [62]
      H.B. Borgstedt and C. Guminski, The B–Li (boron–lithium) system, J. Phase Equilib., 24(2003), No. 6, p. 572. doi: 10.1361/105497103772084723
      [63]
      P.F. Adams, P. Hubberstey, and R.J. Pulham, Review of the solubility of non-metals in liquid lithium, J. Less Common Met., 42(1975), No. 1, p. 1. doi: 10.1016/0022-5088(75)90014-4
      [64]
      M. Terauchi, M. Tanaka, K. Suzuki, A. Ogino, and K. Kimura, Production of zigzag-type BN nanotubes and BN cones by thermal annealing, Chem. Phys. Lett., 324(2000), No. 5-6, p. 359. doi: 10.1016/S0009-2614(00)00637-0
      [65]
      Y. Huang, J. Lin, C.C. Tang, et al., Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm, Nanotechnology, 22(2011), No. 14, art. No. 145602. doi: 10.1088/0957-4484/22/14/145602
      [66]
      T.S. Bartnitskaya, V.I. Lyashenko, A.V. Kurdyumov, N.F. Ostrovskaya, and I.G. Rogovaya, Effect of lithium on structure formation of graphite-like boron nitride with carbothermal synthesis, Powder Metall. Met. Ceram., 33(1995), No. 7-8, p. 335. doi: 10.1007/BF00559576
      [67]
      A.T. Matveev, K.L. Firestein, A.E. Steinman, et al., Boron nitride nanotube growth via boron oxide assisted chemical vapor transport-deposition process using LiNO3 as a promoter, Nano Res., 8(2015), No. 6, p. 2063. doi: 10.1007/s12274-015-0717-y
      [68]
      M. Terauchi, M. Tanaka, H. Matsuda, M. Takeda, and K. Kimura, Helical nanotubes of hexagonal boron nitride, J. Electron. Microsc. (Tokyo), 46(1997), No. 1, p. 75.
      [69]
      L. Li, X.W. Liu, L.H. Li, and Y. Chen, High yield BNNTs synthesis by promotion effect of milling-assisted precursor, Microelectron. Eng., 110(2013), p. 256. doi: 10.1016/j.mee.2013.01.044
      [70]
      K.J. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science, 306(2004), No. 5700, p. 1362. doi: 10.1126/science.1104962
      [71]
      J. Kim, S. Lee, Y.R. Uhm, J. Jun, C.K. Rhee, and G.M. Kim, Synthesis and growth of boron nitride nanotubes by a ball milling-annealing process, Acta Mater., 59(2011), No. 7, p. 2807. doi: 10.1016/j.actamat.2011.01.019
      [72]
      Y.J. Li, J.E. Zhou, K. Zhao, S. Tung, and E. Schneider, Synthesis of boron nitride nanotubes from boron oxide by ball milling and annealing process, Mater. Lett., 63(2009), No. 20, p. 1733. doi: 10.1016/j.matlet.2009.05.005
      [73]
      C.C. Tang, Y. Bando, T. Sato, and K. Kurashima, A novel precursor for synthesis of pure boron nitride nanotubes, Chem. Commun., 2002, No. 12, p. 1290. doi: 10.1039/b202177c
      [74]
      C.H. Lee, J.S. Wang, V.K. Kayatsha, J.Y. Huang, and Y.K. Yap, Effective growth of boron nitride nanotubes by thermal chemical vapor deposition, Nanotechnology, 19(2008), No. 45, art. No. 455605. doi: 10.1088/0957-4484/19/45/455605
      [75]
      N.G. Chopra, R.J. Luyken, K. Cherrey, et al., Boron nitride nanotubes, Science, 269(1995), No. 5226, p. 966. doi: 10.1126/science.269.5226.966
      [76]
      D. Golberg, Y. Bando, C.C. Tang, and C.Y. Zhi, Boron nitride nanotubes, Adv. Mater., 19(2007), No. 18, p. 2413. doi: 10.1002/adma.200700179
      [77]
      P. Ahmad, M.U. Khandaker, Y.M. Amin, and N. Muhammad, Synthesis of highly crystalline multilayered boron niride microflakes, Sci. Rep., 6(2016), art. No. 21403. doi: 10.1038/srep21403
      [78]
      G.M. Bhalerao, A.K. Sinha, and V. Sathe, Defect-dependent annealing behavior of multi-walled carbon nanotubes, Physica E, 41(2008), No. 1, p. 54. doi: 10.1016/j.physe.2008.06.006
      [79]
      Q.N. Guo, X.D. Yue, S.E. Yang, and Y.P. Huo, Tensile properties of ultrathin copper films and their temperature dependence, Comput. Mater. Sci., 50(2010), No. 2, p. 319. doi: 10.1016/j.commatsci.2010.08.021
      [80]
      J. Lipecka, M. Andrzejczuk, M. Lewandowska, J. Janczak-Rusch, and K.J. Kurzydłowski, Evaluation of thermal stability of ultrafine grained aluminium matrix composites reinforced with carbon nanotubes, Compos. Sci. Technol., 71(2011), No. 16, p. 1881. doi: 10.1016/j.compscitech.2011.09.001
      [81]
      B. Chen, J. Shen, X. Ye, et al., Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)–reinforced aluminum matrix composites, Carbon, 114(2017), p. 198. doi: 10.1016/j.carbon.2016.12.013
      [82]
      Z.Y. Liu, B.L. Xiao, W.G. Wang, and Z.Y. Ma, Modelling of carbon nanotube dispersion and strengthening mechanisms in Al matrix composites prepared by high energy ball milling-powder metallurgy method, Compos. Part A, 94(2017), p. 189. doi: 10.1016/j.compositesa.2016.11.029
      [83]
      S.H. Dong, J.Q. Zhou, and D. Hui, A quantitative understanding on the mechanical behaviors of carbon nanotube reinforced nano/ultrafine-grained composites, Int. J. Mech. Sci., 101-102(2015), p. 29. doi: 10.1016/j.ijmecsci.2015.07.019
      [84]
      X.F. Chen, J.M. Tao, J.H. Yi, et al., Enhancing the strength of carbon nanotubes reinforced copper matrix composites by optimizing the interface structure and dispersion uniformity, Diamond Relat. Mater., 88(2018), p. 74. doi: 10.1016/j.diamond.2018.06.026
      [85]
      N. Hansen, Hall–Petch relation and boundary strengthening, Scripta Mater., 51(2004), No. 8, p. 801. doi: 10.1016/j.scriptamat.2004.06.002
      [86]
      P. Jenei, J. Gubicza, E.Y. Yoon, H.S. Kim, and J.L. Lábár, High temperature thermal stability of pure copper and copper–carbon nanotube composites consolidated by high pressure torsion, Compos. Part A, 51(2013), p. 71. doi: 10.1016/j.compositesa.2013.04.007
      [87]
      X.Y. Zhang, W.G. Li, J.Z. Ma, et al., Temperature dependent strengthening mechanisms and yield strength for CNT/metal composites, Compos. Struct., 244(2020), art. No. 112246. doi: 10.1016/j.compstruct.2020.112246
      [88]
      X. Chen, X. Wang, and B.Y. Liu, Effect of temperature on elastic properties of single-walled carbon nanotubes, J. Reinf. Plast. Compos., 28(2009), No. 5, p. 551. doi: 10.1177/0731684407086624
      [89]
      X.Y. Zhang, W.G. Li, J.X. Shao, et al., Temperature dependent vacancy formation energy of metallic materials, Physica B, 584(2020), art. No. 412071. doi: 10.1016/j.physb.2020.412071
      [90]
      N.D. Xu, W.G. Li, J.Z. Ma, et al., Modeling of temperature-dependent hardness for pure FCC and HCP metals, Int. J. Appl. Mech., 12(2020), No. 2, art. No. 2050022. doi: 10.1142/S1758825120500222
      [91]
      J.X. Shao, W.G. Li, R.Z. Wang, et al., Temperature dependent compressive yield strength model for short fiber reinforced magnesium alloy matrix composites, J. Mater. Sci., 53(2018), No. 8, p. 6065. doi: 10.1007/s10853-017-1980-y
      [92]
      M. Yang, L. Weng, H.X. Zhu, T.X. Fan, and D. Zhang, Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons, Carbon, 118(2017), p. 250. doi: 10.1016/j.carbon.2017.03.055
      [93]
      J.P. Liu, G.L. Fan, Z.Q. Tan, et al., Mechanical properties and failure mechanisms at high temperature in carbon nanotube reinforced copper matrix nanolaminated composite, Compos. Part A, 116(2019), p. 54. doi: 10.1016/j.compositesa.2018.10.022
      [94]
      Y. Wang, C. Huang, R.T. Li, et al., Enhanced mechanical properties of boron nitride nanosheets/copper composites with a bioinspired laminated structure, Compos. Interfaces, 29(2022), No. 9, p. 999. doi: 10.1080/09276440.2021.1923952
      [95]
      K. Chu, C.C. Jia, W.S. Li, and P. Wang, Mechanical and electrical properties of carbon–nanotube-reinforced Cu–Ti alloy matrix composites, Phys. Status Solidi A, 210(2013), No. 3, p. 594. doi: 10.1002/pssa.201228549
      [96]
      M. Estili and Y. Sakka, Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites, Sci. Technol. Adv. Mater., 15(2014), No. 6, art. No. 064902. doi: 10.1088/1468-6996/15/6/064902
      [97]
      Y.C. Fan, E.H. Song, T. Mustafa, et al., Liquid-phase assisted engineering of highly strong SiC composite reinforced by multiwalled carbon nanotubes, Adv. Sci., 7(2020), No. 21, art. No. 2002225. doi: 10.1002/advs.202002225

    Catalog


    • /

      返回文章
      返回