留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(7)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  582
  • HTML全文浏览量:  192
  • PDF下载量:  24
  • 被引次数: 0
Xiaobin Geng, Hui Yang, Wenping Guo, Xiaotong Liu, Tao Yang, and Jinjia Liu, Theoretical study on the morphology of cobalt nanoparticles modulated by alkali metal promoters, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2006-2013. https://doi.org/10.1007/s12613-023-2634-5
Cite this article as:
Xiaobin Geng, Hui Yang, Wenping Guo, Xiaotong Liu, Tao Yang, and Jinjia Liu, Theoretical study on the morphology of cobalt nanoparticles modulated by alkali metal promoters, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2006-2013. https://doi.org/10.1007/s12613-023-2634-5
引用本文 PDF XML SpringerLink
研究论文

碱金属助剂对钴纳米颗粒形貌调控的理论研究



  • 通讯作者:

    杨涛    E-mail: ytyangmei@bistu.edu.cn

    刘金家    E-mail: liujj6636@163.com

文章亮点

  • (1)首次系统研究了碱金属助剂在金属Co表面的吸附结构及其对表面电子性质的影响。
  • (2)明晰了金属Co表面热力学稳定性与碱金属助剂吸附的内在关系。
  • (3)揭示了碱金属助剂对金属Co晶体形貌的调控机制。
  • 金属钴纳米颗粒(NPs)作为多相催化反应中的重要催化剂,其性能的调控常常借助碱金属助剂的添加。金属钴的表面结构和形貌对碱金属助剂的添加非常敏感,但助剂对表面结构的调控机制目前仍不清楚。本研究利用密度泛函理论系统地研究了碱金属助剂(钠和钾)在面心立方(FCC)和六方最密堆积(HCP)钴晶体表面上的吸附结构及其吸附能。通过Wulff理论,揭示了碱金属助剂对不同表面的表面能和纳米颗粒形貌的调控效应。我们的研究发现,在FCC结构的钴晶体中,随着碱金属吸附覆盖度的增加,(111)晶面的暴露面积逐渐增加。然而,在较高的碱金属吸附覆盖度下,(311)、(110)和(100)晶面在纳米颗粒上不再暴露。与此不同的是,在HCP结构的钴晶体中,其Wulff形貌的主要暴露面为(0001)和$ \left(10\bar{1}1\right) $晶面,且该形貌受碱金属吸附覆盖度的影响较小。本研究为了解碱金属助剂对金属钴纳米颗粒形貌的调控机制提供了重要见解,为设计合成具有特定晶面和形貌的钴基纳米材料提供了理论指导。
  • Research Article

    Theoretical study on the morphology of cobalt nanoparticles modulated by alkali metal promoters

    + Author Affiliations
    • Cobalt nanoparticles (NPs) catalysts are extensively used in heterogeneous catalytic reactions, and the addition of alkali metal promoters is a common method to modulate the catalytic performance because the catalyst’s surface structures and morphologies are sensitive to the addition of promoters. However, the underlying modulation trend remains unclear. Herein, the adsorption of alkali metal promoters (Na and K) on the surfaces of face-centered-cubic (FCC) and hexagonal-closest packed (HCP) polymorphous cobalt was systematically investigated using density functional theory. Furthermore, the effect of alkali promoters on surface energies and nanoparticle morphologies was revealed on the basis of Wulff theory. For FCC-Co, the exposed area of the (111) facet in the nanoparticle increases with the adsorption coverage of alkali metal oxide. Meanwhile, the (311), (110), and (100) facets would disappear under the higher adsorption coverage of alkali metals. For HCP-Co, the Wulff morphology is dominated by the (0001) and ($ 10\bar{1}1 $) facets and is independent of the alkali metal adsorption coverage. This work provides insights into morphology modulation by alkali metal promoters for the rational design and synthesis of cobalt-based nanomaterials with desired facets and morphologies.
    • loading
    • Supplementary Information-10.1007s12613-023-2634-5.docx
    • [1]
      H. Du, M. Jiang, M. Zhao, X.Y. Ma, Z.W. Xu, and Z.A. Zhao, Activity and selectivity enhancement of silica supported cobalt catalyst for alcohols production from syngas via Fischer–Tropsch synthesis, Int. J. Hydrogen Energy, 47(2022), No. 7, p. 4559. doi: 10.1016/j.ijhydene.2021.11.070
      [2]
      A.L.M. da Silva, J.P. den Breejen, L.V. Mattos, J.H. Bitter, K.P. de Jong, and F.B. Noronha, Cobalt particle size effects on catalytic performance for ethanol steam reforming - Smaller is better, J. Catal., 318(2014), p. 67. doi: 10.1016/j.jcat.2014.07.020
      [3]
      J. Gahtori, G. Singh, C.L. Tucker, E. van Steen, A.V. Biradar, and A. Bordoloi, Insights into promoter-enhanced aqueous phase CO hydrogenation over Co@TiO2 mesoporous nanocomposites, Fuel, 310(2022), art. No. 122402. doi: 10.1016/j.fuel.2021.122402
      [4]
      J.C. Kang, Q.Y. Fan, W. Zhou, et al., Iridium boosts the selectivity and stability of cobalt catalysts for syngas to liquid fuels, Chem, 8(2022), No. 4, p. 1050. doi: 10.1016/j.chempr.2021.12.016
      [5]
      N.A. Luechinger, R.N. Grass, E.K. Athanassiou, and W.J. Stark, Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals, Chem. Mater., 22(2010), No. 1, p. 155. doi: 10.1021/cm902527n
      [6]
      A.A. Karimpoor and U. Erb, Mechanical properties of nanocrystalline cobalt, Phys. Status Solidi A, 203(2006), No. 6, p. 1265. doi: 10.1002/pssa.200566157
      [7]
      B. Ghasemi, R. Hosseini, and F.D. Nayeri, Effects of cobalt nanoparticles on artemisinin production and gene expression in Artemisia annua, Turk. J. Bot., 39(2015), p. 769. doi: 10.3906/bot-1410-9
      [8]
      A. Waris, M. Din, A. Ali, et al., Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: A review, Open Life Sci., 16(2021), No. 1, p. 14. doi: 10.1515/biol-2021-0003
      [9]
      Y. Yang, G.M. Zeng, D.L. Huang, et al., In situ grown single-atom cobalt on polymeric carbon nitride with bidentate ligand for efficient photocatalytic degradation of refractory antibiotics, Small, 16(2020), No. 29, art. No. 2001634. doi: 10.1002/smll.202001634
      [10]
      Y.P. Bao and K.M. Krishnan, Preparation of functionalized and gold-coated cobalt nanocrystals for biomedical applications, J. Magn. Magn. Mater., 293(2005), No. 1, p. 15. doi: 10.1016/j.jmmm.2005.01.037
      [11]
      R. Xu, D.S. Wang, J.T. Zhang, and Y.D. Li, Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene, Chem. Asian J., 1(2006), No. 6, p. 888. doi: 10.1002/asia.200600260
      [12]
      J. Gu, Y. Guo, Y.Y. Jiang, et al., Robust phase control through hetero-seeded epitaxial growth for face-centered cubic Pt@Ru nanotetrahedrons with superior hydrogen electro-oxidation activity, J. Phys. Chem. C, 119(2015), No. 31, p. 17697. doi: 10.1021/acs.jpcc.5b04587
      [13]
      D.C. Sorescu, Adsorption and activation of CO coadsorbed with K on Fe(100) surface: A plane-wave DFT study, Surf. Sci., 605(2011), No. 3-4, p. 401. doi: 10.1016/j.susc.2010.11.009
      [14]
      W.D. Mross, Alkali doping in heterogeneous catalysis, Catal. Rev. Sci. Eng., 25(1983), No. 4, p. 591. doi: 10.1080/01614948308078057
      [15]
      T.S. Rahman, S. Stolbov, and F. Mehmood, Alkali-induced effects on metal substrates and coadsorbed molecules, Appl. Phys. A, 87(2007), No. 3, p. 367. doi: 10.1007/s00339-007-3964-2
      [16]
      Z.P. Liu and P. Hu, An insight into alkali promotion: A density functional theory study of CO dissociation on K/Rh(111), J. Am. Chem. Soc., 123(2001), No. 50, p. 12596. doi: 10.1021/ja011446y
      [17]
      S.J. Jenkins and D.A. King, A role for induced molecular polarization in catalytic promotion: CO coadsorbed with K on Co{$ 10\bar{1}0 $}, J. Am. Chem. Soc., 122(2000), No. 43, p. 10610. doi: 10.1021/ja0004985
      [18]
      C. Zhang, S.G. Li, L.S. Zhong, and Y.H. Sun, Theoretical insights into morphologies of alkali-promoted cobalt carbide catalysts for Fischer–Tropsch synthesis, J. Phys. Chem. C, 125(2021), No. 11, p. 6061. doi: 10.1021/acs.jpcc.0c09164
      [19]
      C.F. Huo, B.S. Wu, P. Gao, Y. Yang, Y.W. Li, and H.J. Jiao, The mechanism of potassium promoter: Enhancing the stability of active surfaces, Angew. Chem. Int. Ed., 50(2011), No. 32, p. 7403. doi: 10.1002/anie.201007484
      [20]
      T. Wang, X.X. Tian, Y.W. Li, J.G. Wang, M. Beller, and H.J. Jiao, Coverage-dependent CO adsorption and dissociation mechanisms on iron surfaces from DFT computations, ACS Catal., 4(2014), No. 6, p. 1991. doi: 10.1021/cs500287r
      [21]
      M.K. Gnanamani, G. Jacobs, W.D. Shafer, and B.H. Davis, Fischer–Tropsch synthesis: Activity of metallic phases of cobalt supported on silica, Catal. Today, 215(2013), p. 13. doi: 10.1016/j.cattod.2013.03.004
      [22]
      M. Sadeqzadeh, H. Karaca, O.V. Safonova, et al., Identification of the active species in the working alumina-supported cobalt catalyst under various conditions of Fischer–Tropsch synthesis, Catal. Today, 164(2011), No. 1, p. 62. doi: 10.1016/j.cattod.2010.12.035
      [23]
      A.H. Lillebø, E. Patanou, J. Yang, E.A. Blekkan, and A. Holmen, The effect of alkali and alkaline earth elements on cobalt based Fischer–Tropsch catalysts, Catal. Today, 215(2013), p. 60. doi: 10.1016/j.cattod.2013.03.030
      [24]
      L. Chen, G.X. Song, Y.C. Fu, and J.Y. Shen, The effects of promoters of K and Zr on the mesoporous carbon supported cobalt catalysts for Fischer–Tropsch synthesis, J. Colloid Interface Sci., 368(2012), No. 1, p. 456. doi: 10.1016/j.jcis.2011.11.030
      [25]
      Z.M. Zhang, X. Zhang, L.J. Zhang, et al., Impacts of alkali or alkaline earth metals addition on reaction intermediates formed in methanation of CO2 over cobalt catalysts, J. Energy Inst., 93(2020), No. 4, p. 1581. doi: 10.1016/j.joei.2020.01.020
      [26]
      E. Patanou, A.H. Lillebø, J.A. Yang, D. Chen, A. Holmen, and E.A. Blekkan, Microcalorimetric studies on Co–Re/γ-Al2O3 catalysts with Na impurities for Fischer–Tropsch synthesis, Ind. Eng. Chem. Res., 53(2014), No. 5, p. 1787. doi: 10.1021/ie402465z
      [27]
      T. Ishida, T. Yanagihara, X.H. Liu, et al., Synthesis of higher alcohols by Fischer–Tropsch synthesis over alkali metal-modified cobalt catalysts, Appl. Catal. A, 458(2013), p. 145. doi: 10.1016/j.apcata.2013.03.042
      [28]
      G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6(1996), No. 1, p. 15. doi: 10.1016/0927-0256(96)00008-0
      [29]
      G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169. doi: 10.1103/PhysRevB.54.11169
      [30]
      J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
      [31]
      G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59(1999), No. 3, p. 1758. doi: 10.1103/PhysRevB.59.1758
      [32]
      M. Methfessel and A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B, 40(1989), No. 6, p. 3616. doi: 10.1103/PhysRevB.40.3616
      [33]
      G. Pirug, G. Brodén, and H.P. Bonzel, Coadsorption of potassium and oxygen on Fe(110), Surf. Sci., 94(1980), No. 2-3, p. 323. doi: 10.1016/0039-6028(80)90010-2
      [34]
      Z. Paál, G. Ertl, and S.B. Lee, Interactions of potassium, oxygen and nitrogen with polycrystalline iron surfaces, Appl. Surf. Sci., 8(1981), No. 3, p. 231. doi: 10.1016/0378-5963(81)90119-7
      [35]
      P. Zhao, Z. Cao, X.C. Liu, et al., Morphology and reactivity evolution of HCP and FCC Ru nanoparticles under CO atmosphere, ACS Catal., 9(2019), No. 4, p. 2768. doi: 10.1021/acscatal.8b05074
      [36]
      S. Zhao, X.W. Liu, C.F. Huo, Y.W. Li, J.G. Wang, and H.J. Jiao, Surface morphology of Hägg iron carbide (χ-Fe5C2) from ab initio atomistic thermodynamics, J. Catal., 294(2012), p. 47. doi: 10.1016/j.jcat.2012.07.003
      [37]
      X.B. Geng, J.J. Liu, H. Yang, W.P. Guo, J. Bai, and X.D. Wen, Surface morphology evolution of cobalt nanoparticles induced by hydrogen adsorption: A theoretical study, New J. Chem., 46(2022), No. 19, p. 9272. doi: 10.1039/D2NJ00356B
      [38]
      G.D. Barmparis, Z. Lodziana, N. Lopez, and I.N. Remediakis, Nanoparticle shapes by using Wulff constructions and first-principles calculations, Beilstein J. Nanotechnol., 6(2015), p. 361. doi: 10.3762/bjnano.6.35
      [39]
      H. Lin, J.X. Liu, H.J. Fan, and W.X. Li, Compensation between surface energy and hcp/fcc phase energy of late transition metals from first-principles calculations, J. Phys. Chem. C, 124(2020), No. 20, p. 11005. doi: 10.1021/acs.jpcc.0c02142
      [40]
      J.X. Liu, H.Y. Su, D.P. Sun, B.Y. Zhang, and W.X. Li, Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC, J. Am. Chem. Soc., 135(2013), No. 44, p. 16284. doi: 10.1021/ja408521w
      [41]
      H. Lin, J.X. Liu, H.J. Fan, and W.X. Li, Morphology evolution of FCC and HCP cobalt induced by a CO atmosphere from ab initio thermodynamics, J. Phys. Chem. C, 124(2020), No. 42, p. 23200. doi: 10.1021/acs.jpcc.0c07386
      [42]
      L.L. Liu, M.T. Yu, Q. Wang, et al., Theoretically predicted surface morphology of FCC cobalt nanoparticles induced by Ru promoter, Catal. Sci. Technol., 10(2020), No. 1, p. 187. doi: 10.1039/C9CY01892A
      [43]
      O.L. Eliseev, M.V. Tsapkina, O.S. Dement’eva, P.E. Davydov, A.V. Kazakov, and A.L. Lapidus, Promotion of cobalt catalysts for the Fischer–Tropsch synthesis with alkali metals, Kinet. Catal., 54(2013), No. 2, p. 207. doi: 10.1134/S0023158413020055
      [44]
      J.X. Liu, H.Y. Su, and W.X. Li, Structure sensitivity of CO methanation on Co (0001), ($ 10\bar{1}2 $) and ($ 11\bar{2}0 $) surfaces: Density functional theory calculations, Catal. Today, 215(2013), p. 36. doi: 10.1016/j.cattod.2013.04.024
      [45]
      A.M. Saib, D.J. Moodley, I.M. Ciobîcă, et al., Fundamental understanding of deactivation and regeneration of cobalt Fischer–Tropsch synthesis catalysts, Catal. Today, 154(2010), No. 3-4, p. 271. doi: 10.1016/j.cattod.2010.02.008
      [46]
      R.G. Zhang, L. Kang, H.X. Liu, B.J. Wang, D.B. Li, and M.H. Fan, Crystal facet dependence of carbon chain growth mechanism over the HCP and FCC Co catalysts in the Fischer–Tropsch synthesis, Appl. Catal. B, 269(2020), art. No. 118847. doi: 10.1016/j.apcatb.2020.118847

    Catalog


    • /

      返回文章
      返回