留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(9)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  689
  • HTML全文浏览量:  276
  • PDF下载量:  43
  • 被引次数: 0
Ran Wang, Xiu Song, Lei Wang, Yang Liu, Mitsuo Niinomi, Deliang Zhang,  and Jun Cheng, New role of α phase in the fracture behavior and fracture toughness of a β-type bio-titanium alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1756-1763. https://doi.org/10.1007/s12613-023-2635-4
Cite this article as:
Ran Wang, Xiu Song, Lei Wang, Yang Liu, Mitsuo Niinomi, Deliang Zhang,  and Jun Cheng, New role of α phase in the fracture behavior and fracture toughness of a β-type bio-titanium alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1756-1763. https://doi.org/10.1007/s12613-023-2635-4
引用本文 PDF XML SpringerLink
研究论文

α相对β型生物钛合金断裂行为和断裂韧性的作用


  • 通讯作者:

    宋秀    E-mail: wanglei@mail.neu.edu.cn

    王磊    E-mail: songxiu@mail.neu.edu.cn

文章亮点

  • (1) 系统地研究了针状α相对TNTZ钛合金断裂韧性的影响规律。
  • (2) TNTZ钛合金断裂行为和断裂韧性的变化与α相特征有关。
  • (3) TNTZ钛合金断裂行为主要受控于α相长轴不同取向的数量。
  • Ti–29Nb–13Ta–4.6Zr(TNTZ)具有高比强度、低杨氏模量(接近人体骨组织,约60 GPa)、良好的生物相容性等,有望用于骨科修复、人工假体替换等。然而固溶态TNTZ钛合金的力学性能逊色于Ti–6Al–4V合金。时效处理可提高TNTZ钛合金的强度、但其塑韧性受损,危及医用服役安全。迄今时效α相对TNTZ钛合金断裂行为的影响仍处空白。本文旨在揭示时效α相对合金断裂行为的影响规律及作用机理,为合金的安全服役提供理论依据。为此,本文通过时效处理调控α相的尺寸、形态、分布、含量等特征,通过显微组织观察、断裂韧性测试、断口形貌观察研究了α相特征参量与合金断裂行为及断裂韧性的关系。结果表明,723 K时效,随时间延长,合金断裂韧性先降低后升高;4–8 h降至最低值72.07–73.19 kJ·m−2;72 h升至最高值144.89 kJ·m−2。时效4–8 h,断裂韧性较低的原因是:大长径比的针状α相尖端应力集中程度高,易于形成微裂纹;网格上呈“V形”或“近似垂直”排列的α相促进裂纹沿α/β相界面优先扩张,使裂尖难以均匀钝化、偏转,裂纹扩张阻力下降。8–72 h,断裂韧性回升的原因是:α相长径比减小,应力集中程度降低;网格上α相长轴方向的种类逐渐增多,呈“三棱锥”排列的α相对裂纹扩张的阻碍增加,使裂尖均匀钝化;α相分布渐趋均匀、数量增多,使裂尖钝化、偏转增加。时效α相对合金断裂行为影响的分析表明,723 K时效态合金的断裂行为主要由网格上α相长轴不同取向的数量控制。
  • Research Article

    New role of α phase in the fracture behavior and fracture toughness of a β-type bio-titanium alloy

    + Author Affiliations
    • The role of α precipitates formed during aging in the fracture toughness and fracture behavior of β-type bio-titanium alloy Ti–29Nb–13Ta–4.6Zr (TNTZ) was studied. Results showed that the fracture toughness of the TNTZ alloy aged at 723 K decreases to the minimum of 72.07–73.19 kJ·m−2 when the aging time is extended to 4–8 h and then gradually increases and reaches 144.89 kJ·m−2 after 72 h. The decrease in fracture toughness within the aging time of 4–8 h is caused by the large stress concentration at the tip of acicular α precipitates with a high aspect ratio and the preferential crack propagation along the inhomogeneous acicular α precipitates distributed in “V-shape” and “nearly perpendicular shape”. When the aging time is extended to 8–72 h, the precrack tip is uniformly blunted, and the crack is effectively deflected by α precipitates with multi long axis directions, more high homogeneity, low aspect ratio, and large number density. Analysis of the effect of α precipitates on the fracture behavior suggested that the number of long axis directions of α precipitates is the key controlling factor for the fracture behavior and fracture toughness of the TNTZ alloy aged for different times.
    • loading
    • [1]
      C.N. Elias, J.H.C. Lima, R. Valiev, and M.A. Meyers, Biomedical applications of titanium and its alloys, JOM, 60(2008), No. 3, p. 46. doi: 10.1007/s11837-008-0031-1
      [2]
      Y.H. Li, C. Yang, H.D. Zhao, S.G. Qu, X.Q. Li, and Y.Y. Li, New developments of Ti-based alloys for biomedical applications, Materials, 7(2014), No. 3, p. 1709. doi: 10.3390/ma7031709
      [3]
      H. Koizumi, Y. Takeuchi, H. Imai, T. Kawai, and T. Yoneyama, Application of titanium and titanium alloys to fixed dental prostheses, J. Prosthodont. Res., 63(2019), No. 3, p. 266. doi: 10.1016/j.jpor.2019.04.011
      [4]
      J. Gallo, J. Vaculova, S.B. Goodman, Y.T. Konttinen, and J.P. Thyssen, Contributions of human tissue analysis to understanding the mechanisms of loosening and osteolysis in total hip replacement, Acta Biomater., 10(2014), No. 6, p. 2354. doi: 10.1016/j.actbio.2014.02.003
      [5]
      D. Taylor, Observations on the role of fracture mechanics in biology and medicine, Eng. Fract. Mech., 187(2018), p. 422. doi: 10.1016/j.engfracmech.2018.01.002
      [6]
      M. Niinomi, Recent titanium R&D for biomedical applications in Japan, JOM, 51(1999), No. 6, p. 32. doi: 10.1007/s11837-999-0091-x
      [7]
      E. Takematsu, K. Cho, J. Hieda, et al., Adhesive strength of bioactive oxide layers fabricated on TNTZ alloy by three different alkali-solution treatments, J. Mech. Behav. Biomed. Mater., 61(2016), p. 174. doi: 10.1016/j.jmbbm.2015.12.046
      [8]
      Y.S. Lee, M. Niinomi, M. Nakai, K. Narita, K. Cho, and H.H. Liu, Wear transition of solid-solution-strengthened Ti–29Nb–13Ta–4.6Zr alloys by interstitial oxygen for biomedical applications, J. Mech. Behav. Biomed. Mater., 51(2015), p. 398. doi: 10.1016/j.jmbbm.2015.07.001
      [9]
      X. Song, M. Niinomi, M. Nakai, H. Tsutsumi, and L. Wang, Improvement in fatigue strength while keeping low Young’s modulus of a β-type titanium alloy through yttrium oxide dispersion, Mater. Sci. Eng. C, 32(2012), No. 3, p. 542. doi: 10.1016/j.msec.2011.12.007
      [10]
      M. Zarka, B. Dikici, M. Niinomi, K.V. Ezirmik, M. Nakai, and H. Yilmazer, A systematic study of β-type Ti-based PVD coatings on magnesium for biomedical application, Vacuum, 183(2021), art. No. 109850. doi: 10.1016/j.vacuum.2020.109850
      [11]
      M.A. Kalaie, A. Zarei-Hanzaki, M. Ghambari, P. Dastur, J. Málek, and E. Farghadany, The effects of second phases on superelastic behavior of TNTZ bio alloy, Mater. Sci. Eng. A, 703(2017), p. 513. doi: 10.1016/j.msea.2017.07.053
      [12]
      H.H. Liu, M. Niinomi, M. Nakai, S. Obara, and H. Fujii, Improved fatigue properties with maintaining low Young’s modulus achieved in biomedical beta-type titanium alloy by oxygen addition, Mater. Sci. Eng. A, 704(2017), p. 10. doi: 10.1016/j.msea.2017.07.078
      [13]
      T. Akahori, M. Niinomi, H. Fukui, M. Ogawa, and H. Toda, Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments, Mater. Sci. Eng. C, 25(2005), No. 3, p. 248. doi: 10.1016/j.msec.2004.12.007
      [14]
      M. Niinomi, Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr, Biomaterials, 24(2003), No. 16, p. 2673. doi: 10.1016/S0142-9612(03)00069-3
      [15]
      M. Ikeda, S.Y. Komatsu, I. Sowa, and M. Niinomi, Aging behavior of the Ti–29Nb–13Ta–4.6Zr new beta alloy for medical implants, Metall. Mater. Trans. A, 33(2002), No. 3, p. 487. doi: 10.1007/s11661-002-0110-9
      [16]
      M. Niinomi, T. Hattori, K. Morikawa, et al., Development of low rigidity β-type titanium alloy for biomedical applications, Mater. Trans., 43(2002), No. 12, p. 2970. doi: 10.2320/matertrans.43.2970
      [17]
      S. Kashef, A. Asgari, T.B. Hilditch, W.Y. Yan, V.K. Goel, and P.D. Hodgson, Fracture toughness of titanium foams for medical applications, Mater. Sci. Eng. A, 527(2010), No. 29-30, p. 7689. doi: 10.1016/j.msea.2010.08.044
      [18]
      A. Bhattacharjee, P. Ghosal, T.K. Nandy, S.V. Kamat, A.K. Gogia, and S. Bhargava, Effect of grain size on the tensile behaviour and fracture toughness of Ti–10V–4.5Fe–3Al beta titanium alloy, Trans. Indian Inst. Met., 61(2008), No. 5, p. 399. doi: 10.1007/s12666-008-0071-9
      [19]
      J.O. Peters and G. Lütjering, Comparison of the fatigue and fracture of α+β and β titanium alloys, Metall. Mater. Trans. A, 32(2001), No. 11, p. 2805. doi: 10.1007/s11661-001-1031-8
      [20]
      J.K. Fan, J.S. Li, H.C. Kou, K. Hua, and B. Tang, The interrelationship of fracture toughness and microstructure in a new near β titanium alloy Ti–7Mo–3Nb–3Cr–3Al, Mater. Charact., 96(2014), p. 93. doi: 10.1016/j.matchar.2014.07.018
      [21]
      W. Zhou, P. Ge, Y.Q. Zhao, et al., Relationship between mechanical properties and microstructure in a new high strength β titanium alloy, Rare Met. Mater. Eng., 46(2017), No. 8, p. 2076. doi: 10.1016/S1875-5372(17)30182-0
      [22]
      F. Ebrahimi and H.K. Seo, Ductile crack initiation in steels, Acta Mater., 44(1996), No. 2, p. 831. doi: 10.1016/1359-6454(95)00206-5
      [23]
      F. Ebrahimi, A study of crack initiation in the ductile-to-brittle transition region of a weld, [in] R. Reed, ed., Fracture Mechanics: Eighteenth Symposium, ASTM International, West Conshohocken, 1988, p. 555.
      [24]
      R. Wang, L. Wang, X. Song, Y. Liu, M. Niinomi, and J. Cheng, Phenomenological law and process of α phase evolution in a β-type bio-Titanium alloy TNTZ during aging, Mater. Charact., 182(2021), art. No. 111576. doi: 10.1016/j.matchar.2021.111576
      [25]
      W.D. Cao and X.P. Lu, On the relationship between the geometry of deformed crack tip and crack parameters, Int. J. Fract., 25(1984), No. 1, p. 33. doi: 10.1007/BF01152748
      [26]
      T. Chowdhury, S. Sivaprasad, H.N. Bar, S. Tarafder, and N.R. Bandyopadhyay, Stretch zone formation in cyclic fracture of 20MnMoNi55 pressure vessel steel, Eng. Fract. Mech., 148(2015), p. 60. doi: 10.1016/j.engfracmech.2015.09.026
      [27]
      L. Wang, M. Niinomi, S. Takahashi, et al., Relationship between fracture toughness and microstructure of Ti–6Al–2Sn–4Zr–2Mo alloy reinforced with TiB particles, Mater. Sci. Eng. A, 263(1999), No. 2, p. 319. doi: 10.1016/S0921-5093(98)01163-0

    Catalog


    • /

      返回文章
      返回