留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(9)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1771
  • HTML全文浏览量:  558
  • PDF下载量:  164
  • 被引次数: 0
Quan Shi, Jue Tang,  and Mansheng Chu, Key issues and progress of industrial big data-based intelligent blast furnace ironmaking technology, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1651-1666. https://doi.org/10.1007/s12613-023-2636-3
Cite this article as:
Quan Shi, Jue Tang,  and Mansheng Chu, Key issues and progress of industrial big data-based intelligent blast furnace ironmaking technology, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1651-1666. https://doi.org/10.1007/s12613-023-2636-3
引用本文 PDF XML SpringerLink
特约综述

基于工业大数据的智能高炉炼铁技术关键问题与进展


  • 通讯作者:

    唐珏    E-mail: tangj@smm.neu.edu.cn

    储满生    E-mail: chums@smm.neu.edu.cn

文章亮点

  • (1)对钢铁行业数字化、智能化转型的意义进行了详细阐述。
  • (2)从数据到模型对智能化高炉炼铁技术存在的问题和发展进行了系统性分析。
  • (3)以东北大学研究基础为引,为智能化技术在高炉炼铁中的应用提供了借鉴。
  • 高炉冶炼过程是最典型的“黑箱”过程,其复杂性和不确定性对炉况顺行带来了巨大挑战。但高炉炼铁拥有丰富的数据资源,数据科学、智能技术的快速发展,为解决高炉炼铁过程中不确定性问题提供了有效手段。本文围绕人工智能技术在高炉炼铁中的应用,从高炉数据治理、时滞性与关联性分析、高炉关键变量预测、高炉炉况评价和高炉多目标智能优化五个方面对现阶段智能化高炉炼铁技术的发展和存在问题进行总结与分析。在高炉数据预处理方面,应综合考虑数据问题和算法特性,科学选择数据处理方法,才能使高炉数据质量得到有效改善;在高炉重要特征分析方面,需要先消除高炉参数间时滞性的影响,才能保证高炉参数与炉况经济指标之间逻辑关系的准确性;在高炉参数预测与炉况评价方面,需要构建数据信息与工艺机理融合的高炉智慧模型,才能够实现高炉关键指标的精准预测与高炉炉况的科学评价。在高炉参数优化方面,应该以低风险、低成本、高回报作为优化准则,追求优化效果的同时还应综合考虑现场操作的可行度和操作成本。本文内容有助于提高工艺操作者对智能化高炉技术的整体认识和理解。此外,将大数据技术与高炉工艺相结合,有利于提高数据模型在实际生产中的实用性,促进智能化技术在高炉炼铁中的应用。
  • Invited Review

    Key issues and progress of industrial big data-based intelligent blast furnace ironmaking technology

    + Author Affiliations
    • Blast furnace (BF) ironmaking is the most typical “black box” process, and its complexity and uncertainty bring forth great challenges for furnace condition judgment and BF operation. Rich data resources for BF ironmaking are available, and the rapid development of data science and intelligent technology will provide an effective means to solve the uncertainty problem in the BF ironmaking process. This work focused on the application of artificial intelligence technology in BF ironmaking. The current intelligent BF ironmaking technology was summarized and analyzed from five aspects. These aspects include BF data management, the analyses of time delay and correlation, the prediction of BF key variables, the evaluation of BF status, and the multi-objective intelligent optimization of BF operations. Solutions and suggestions were offered for the problems in the current progress, and some outlooks for future prospects and technological breakthroughs were added. To effectively improve the BF data quality, we comprehensively considered the data problems and the characteristics of algorithms and selected the data processing method scientifically. For analyzing important BF characteristics, the effect of the delay was eliminated to ensure an accurate logical relationship between the BF parameters and economic indicators. As for BF parameter prediction and BF status evaluation, a BF intelligence model that integrates data information and process mechanism was built to effectively achieve the accurate prediction of BF key indexes and the scientific evaluation of BF status. During the optimization of BF parameters, low risk, low cost, and high return were used as the optimization criteria, and while pursuing the optimization effect, the feasibility and site operation cost were considered comprehensively. This work will help increase the process operator’s overall awareness and understanding of intelligent BF technology. Additionally, combining big data technology with the process will improve the practicality of data models in actual production and promote the application of intelligent technology in BF ironmaking.
    • loading
    • [1]
      J.L. Zhang, H.Y. Fu, Y.X. Liu, et al., Review on biomass metallurgy: Pretreatment technology, metallurgical mechanism and process design, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1133. doi: 10.1007/s12613-022-2501-9
      [2]
      H.N. He, X.C. Wang, G.Z. Peng, et al., Intelligent logistics system of steel bar warehouse based on ubiquitous information, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1367. doi: 10.1007/s12613-021-2325-z
      [3]
      P. Zhou, P. Dai, H. D. Song, and T. Y. Chai, Data-driven recursive subspace identification based online modelling for prediction and control of molten iron quality in blast furnace ironmaking, IET Control Theory Appl., 11(2017), No. 14, p. 2343. doi: 10.1049/iet-cta.2016.1474
      [4]
      L. Lin and J.Q. Zeng, Consideration of green intelligent steel processes and narrow window stability control technology on steel quality, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1264. doi: 10.1007/s12613-020-2246-2
      [5]
      K. Jiang, Z.H. Jiang, Y.F. Xie, D. Pan, and W.H. Gui, Prediction of multiple molten iron quality indices in the blast furnace ironmaking process based on attention-wise deep transfer network, IEEE Trans. Instrum. Meas., 71(2022), art. No. 2512114. doi: 10.1109/TIM.2022.3185325
      [6]
      S. Liu, S. Xie, and Q. Zhang, Multi-energy synergistic optimization in steelmaking process based on energy hub concept, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1378. doi: 10.1007/s12613-021-2281-7
      [7]
      J.P. Li, C.C. Hua, Y.N Yang, and X.P. Guan, A novel MIMO T–S fuzzy modeling for prediction of blast furnace molten iron quality with missing outputs, IEEE Trans. Fuzzy Syst., 29(2021), No. 6, p. 1654.
      [8]
      Y.F. Yan and Z.M. Lü, Multi-objective quality control method for cold-rolled products oriented to customized requirements, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1332. doi: 10.1007/s12613-021-2292-4
      [9]
      J. Lee, J. Singh, M. Azamfar, and K.Y. Sun, Industrial AI: a systematic framework for AI in industrial applications, China Mech. Eng., 31(2020), No. 1, p. 37. doi: 10.3969/j.issn.1004-132X.2020.01.005
      [10]
      R. Boom, Research Fund for Coal and Steel RFCS: A European success story, Ironmaking Steelmaking., 41(2014), No. 9, p. 647. doi: 10.1179/0301923314Z.000000000313
      [11]
      S.W. Wu, J. Yang, R.H. Zhang, and H. Ono, Prediction of endpoint sulfur content in KR desulfurization based on the hybrid algorithm combining artificial neural network with SAPSO, IEEE Access, 8(2020), p. 33778. doi: 10.1109/ACCESS.2020.2971517
      [12]
      K.Y. Shin and H.C. Park, Smart manufacturing systems engineering for designing smart product-quality monitoring system in the industry 4.0, [in] 2019 19th International Conference on Control, Automation and Systems (ICCAS), Jeju, 2020, p. 1693.
      [13]
      Y. Luo, Progress of POSCO Smart Factory construction, China Steel Focus, 2021, No. 12, p. 51.
      [14]
      G.D. Wang, Z.Y. Liu, D.H Zhang, and M.S. Chu, Transformation and development of materials science and technology and construction of iron and steel innovation infrastructure, J. Iron Steel Res., 33(2021), No. 10, p. 1003. doi: 10.13228/j.boyuan.issn1001-0963.20210053
      [15]
      C. Xiao and L.H. Lyu, Application of full stack machine learning in intelligent manufacturing of steel process, Baosteel Technol., 2021, No. 2, p. 24.
      [16]
      Z.N. Li, Prediction and Optimization of Key Process Parameters of Large Blast Furnace Based on Big Data Mining [Dissertation], Northeastern University, Shenyang, 2020, p. 27.
      [17]
      Y.S. Qi, M.S. Chu, J. Tang, Q. Shi, M.Y. Wang and Z.Q. Liu, Research progress of blast furnace data governance based on big data technology, Metall. Ind. Autom., 47(2023), No. 1, p. 43. doi: 10.3969/j.issn.1000-7059.2023.01.005
      [18]
      S.N. Zhang, Comprehensive Evaluation of Blast Furnace Conditions Based on the Combination of Expert Knowledge and Data [Dissertation], Inner Mongolia University of Science and Technology, Baotou, 2020, p. 9.
      [19]
      S.F. Chen, X.J. Liu, H.Y. Li, X.P. Bu, Q. Lyu, and F.L. Liu, Preliminary study on missing data processing of blast furnace ironmaking, China Metall., 31(2021), No. 2, p. 17. doi: 10.13228/j.boyuan.issn1006-9356.20200358
      [20]
      J. Zhao, S.F. Chen, X.J. Liu, X. Li, H.Y. Li, and Q. Lyu, Outlier screening for ironmaking data on blast furnaces, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1001. doi: 10.1007/s12613-021-2301-7
      [21]
      Z.Q. Zheng, Comparative Research of Data Filling Algorithms under Different Missing Mechanisms [Dissertation], Guizhou Minzu University, Guizhou, 2022, p. 39.
      [22]
      Z.N. Li, M.S. Chu, Z.G. Liu, and B.F. Li, Prediction and optimization of blast furnace parameters based on machine learning and genetic algorithm, J. Northeastern Univ. Nat. Sci., 41(2020), No. 9, p. 1262. doi: 10.12068/j.issn.1005-3026.2020.09.008
      [23]
      X. Liu, W.J. Zhang, Q. Shi, and L. Zhou, Operation parameters optimization of blast furnaces based on data mining and cleaning, J. Northeastern Univ. Nat. Sci., 41(2020), No. 8, p. 1153. doi: 10.12068/j.issn.1005-3026.2020.08.015
      [24]
      C.Y. Deng, K.H. Wu, Y.P. Tan, and J. Hu, Outlier detection method based on multivariate time series segmentation clustering, Comput. Eng. Des., 41(2020), No. 11, p. 6. doi: 10.16208/j.issn1000-7024.2020.11.020
      [25]
      C.X. Zhao, H.F. Xue, L. Wang, and Y. Wan, Water consumption abnormal data detection method based on isolation forest, J. China Inst. Water Res. Hydropower Res., 18(2020), No. 1, p. 9. doi: 10.13244/j.cnki.jiwhr.2020.01.004
      [26]
      M. Bessec, Revisiting the transitional dynamics of business cycle phases with mixed-frequency data, Econ. Rev., 38(2019), No. 7, p. 711. doi: 10.1080/07474938.2017.1397837
      [27]
      G. Ye, Research on the coincident index and economic fluctuations in China with mixed-frequency data, Stat. Res., 32(2015), No. 08, p. 17. doi: 10.19343/j.cnki.11-1302/c.2015.08.003
      [28]
      C.L. Gao, Blast Furnace Smelting Process Optimization of Pulverized Coal Injection Based on Data-driven [Dissertation], Inner Mongolia University of Science & Technology, Baotou, 2015, p. 22.
      [29]
      J.Q. An, Y.F. Chen, and M. Wu, A prediction method for carbon monoxide utilization ratio of blast furnace based on improved support vector regression, CIESC J., 66(2015), No. 1, p. 206. doi: 10.11949/j.issn.0438-1157.20141482
      [30]
      Y.T. Wang, J.Z. Zhao, X.P. Gong, and G. Yang, A Method for Predicting Silicon Content of Molten Iron in Blast Furnace with Uncertain Information of Time Delay, Chinese Patent, Appl. 110309608A, 2019.
      [31]
      F. Ming. Research on Application of Association Rule Mining to Blast Furnace Situation Prediction [Dissertation], Chongqing University, Chongqing, 2009, p. 30.
      [32]
      C.L. Huang, Y.L. Tang, X.F. Zhang, and Y.Z. Chu, Prediction and simulation of silicon content in blast furnace for PCA and PSO-ELM, Comput. Simul., 37(2020), No. 02, p. 398. doi: 10.3969/j.issn.1006-9348.2020.02.081
      [33]
      D.F. Liu, J. Zhang, and Q. Fu, Deep learning prediction modeling of blast furnace condition based on principal component analysis of temperature field, Metall. Ind. Autom., 45(2021), No. 3, p. 42. doi: 10.3969/j.issn.1000-7059.2021.03.006
      [34]
      C.C. Meng, J.S. Zeng, and W.J. Li, Blast furnace fault detection based on KPCA, J. China Univ. Metrol., 23(2012), No. 04, p. 332. doi: 10.3969/j.issn.1004-1540.2012.04.003
      [35]
      Z.Q. Li, J.Q. Du, B. Nin, W.P. Xiong, C.Y. Huang, and H. Li, Summary of feature selection methods, Comput. Eng. Appl., 55(2019), No. 24, p. 10. doi: 10.3778/j.issn.1002-8331.1909-0066
      [36]
      Z.Y. Wang, D.H. Jiang, X.D. Wang, J.L. Zhang, and Z.J. Liu, Prediction of blast furnace hot metal temperature based on support vector regression and extreme learning machine, Chin. J. Eng., 43(2021), No. 4, p. 569. doi: 10.13374/j.issn2095-9389.2020.05.28.001
      [37]
      D.W. Jiang, Z.Y. Wang, J.L. Zhang, D.J. Jiang, K.J. Li, and F.L. Liu, Machine learning modeling of gas utilization rate in blast furnace, JOM, 74(2022), No. 4, p. 1633. doi: 10.1007/s11837-022-05166-7
      [38]
      Q.J. Shi, F. Pan, F.H. Long, et al., A review of feature selection methods, Microelectron. Comput., 39(2022), No. 03, p. 1. doi: 10.19304/j.issn1000-7180.2021.1033
      [39]
      C.J. Zhang, B.B. Chen, C. Zhou, and X.G. Yin, Feature selection algorithm based on multi-objective bare-bones particle swarm optimization, J. Comput. Appl., 38(2018), No. 11, p. 3156. doi: 10.11772/j.issn.1001-9081.2018041358
      [40]
      B. Wutzl, K. Leibnitz, F. Rattay, M. Kronbichler, M. Murata, and S.M. Golaszewski, Genetic algorithms for feature selection when classifying severe chronic disorders of consciousness, PLoS One, 14(2019), No. 7, art. No. e0219683. doi: 10.1371/journal.pone.0219683
      [41]
      Y.R. Li and C.J. Yang, Domain knowledge based explainable feature construction method and its application in ironmaking process, Eng. Appl. Artif. Intell., 100(2021), art. No. 104197. doi: 10.1016/j.engappai.2021.104197
      [42]
      Y. Deng and Q. Lyu, Establishment of evaluation and prediction system of comprehensive state based on big data technology in a commercial blast furnace, ISIJ Int., 60(2020), No. 5, p. 898. doi: 10.2355/isijinternational.ISIJINT-2019-545
      [43]
      G.M. Cui, T. Sun, and Y. Zhang, Application of support vector machine (SVM) in prediction of molten iron temperature in blast furnace, Control Eng. China, 20(2013), No. 5, p. 809. doi: 10.14107/j.cnki.kzgc.2013.05.006
      [44]
      S. Li, J.C. Chang, M.S. Chu, J. Li, and A.M. Yang, A blast furnace coke ratio prediction model based on fuzzy cluster and grid search optimized support vector regression, Appl. Intell., 52(2022), No. 12, p. 13533. doi: 10.1007/s10489-022-03234-8
      [45]
      J. Zhao, H.W. Li, X.J. Liu, X. Li, H.Y. Li, and Q. lyu, Prediction model of permeability index based on Xgboost, China Metall., 31(2021), No. 03, p. 22. doi: 10.13228/j.boyuan.issn1006-9356.20200704
      [46]
      Z.K. Cheng, X.L. Yan, W.S. Cheng, and Z.X. Yuan, Study on coke quality prediction model based on gradient lifting decision tree, J. Chongqing Technol. Bus. Univ. Nat. Sci. Ed., 38(2021), No. 5, p. 55. doi: 10.16055/j.issn.1672-058X.2021.0005.009
      [47]
      S. Liu, Q. Lyu, X.J. Liu, Y.Q. Sun, and X.S. Zhang, A prediction system of burn through point based on gradient boosting decision tree and decision rules, ISIJ Int., 59(2019), No. 12, p. 2156. doi: 10.2355/isijinternational.ISIJINT-2019-059
      [48]
      X.J. Liu, Y. Deng, X. Li, L.Y. Hao, and E.H. Liu, Prediction of silicon content in hot metal of blast furnace based on bid data technology, China Metall., 31(2021), No. 2, p. 10. doi: 10.13228/j.boyuan.issn1006-9356.20200391
      [49]
      Z.Q. Cui, Y. Han, A.M. Yang, Y.Z. Zhang, and S. Zhang, Intelligent prediction of silicon content in hot metal of blast furnace based on neural network time series model, Metall. Ind. Autom., 45(2021), No. 3, p. 51. doi: 10.3969/j.issn.1000-7059.2021.03.007
      [50]
      X.J. Bao, S.H. Weng, G. Chen, J. Wang, X. Chen, and J.C. Xie, Comparison on multi-step prediction of blast furnace gas generation based on LSTM/SARIMA time series model, Iron Steel, 57(2022), No. 9, p. 166. doi: 10.13228/j.boyuan.issn0449-749x.20220166
      [51]
      J. Zhu, Research of Selective Ensemble Learning and Its Application [Dissertation], East China Jiaotong University, Nanchang, 2016, p. 6.
      [52]
      L. Shi, W.H. Liu, F.J. Cao, and J.J. Wang, Combined forecast of blast furnace gas utilization rate based on CEEMDAN-SVM-LSTM, China Meas. Test, 49(2023), No. 1, p. 86.
      [53]
      D.T. Zhao, Research on Prediction of Key Parameters of Blast Furnace Smelting and Classification Method of Furnace Condition [Dissertation], Tianjin University of Technology, Tianjin, 2018, p. 23.
      [54]
      F.Y. Huang, L. Huang, M. Fu, et al., A New Anterograde Evaluation Method for Blast Furnace, Chinese Patent, Appl. 109063358A, 2018.
      [55]
      H.Y. Li, X.P. Bu, X.J. Liu, et al., Evaluation and prediction of blast furnace status based on big data platform of ironmaking and data mining, ISIJ Int., 61(2021), No. 1, p. 108. doi: 10.2355/isijinternational.ISIJINT-2020-249
      [56]
      X.C. Zhang, Z. Song, D.F. Zhou, and C. Fan, Research on index ranking of blast furnace parameter rules based on PCA algorithms, [in] Metallurgical Automation and Intelligence, Proceedings of the 12th China Iron and Steel Annual Conference, Beijing, 2019, p. 34.
      [57]
      X.X. Jiang, Research on the Stability Evaluation for Blast Furnace Condition with Data Mining Method [Dissertation], Northeastern University, Shenyang, 2020, p. 33.
      [58]
      X.D. Ren, Research on Stability Evaluation Method of Blast Furnace Condition [Dissertation], Northeastern University, Shenyang, 2019, p. 43.
      [59]
      J.P. Li, C.C. Hua, and X.P. Guan, Modeling research for smelting mechanism blast furnace smelting process based on operation data and expert knowledge, J. Shanghai Jiaotong Univ., 52(2018), No. 10, p. 1142. doi: 10.16183/j.cnki.jsjtu.2018.10.002
      [60]
      J.Q. An, H.C. Chen, M. Wu, W.Y. He, and J.H. She, Two-layer fault diagnosis method for blast furnace based on evidence-conflict reduction on multiple time scales, Contr. Eng. Pract., 101(2020), art. No. 104474. doi: 10.1016/j.conengprac.2020.104474
      [61]
      B. Wang, Y.M. Chen, W.G. Song, and S.B. Wang, Practice of furnace working status stabilization in Baosteel’s No.1 BF, [in] Ironmaking and Raw Materials, Proceedings of the 12th China Iron and Steel Annual Conference, Beijing, 2019, p. 31.
      [62]
      Y.P. Zheng, Measures to manage frequent fluctuations in furnace conditions at Jingtang’s No. 1 blast furnace, Ironmaking, 38(2019), No. 6, p. 36.
      [63]
      Y. Cheng, Z.Y. Wang, and G.M. Zhou, Causes and countermeasures for the fluctuating furnace conditions of Xianggang’s new No. 3 blast furnace, Ironmaking, 39(2020), No. 1, p. 38.
      [64]
      Y. Tian, G. Wang, J.Q. Su, and H. Bai, Research on optimization and regulation model of blast furnace parameters based on big data mining, Metall. Ind. Autom., 46(2022), No. 5, p. 65.
      [65]
      Z.W. Zhang, X.R. Che, and H.B. Zhang, Establishment and validation of multi-objective optimization model of blast furnace, Chin. J. Process Eng., 17(2017), No. 1, p. 178. doi: 10.12034/j.issn.1009-606X.216267
      [66]
      A. Dong, Study on Prediction of Parameters and Optimization Control Model of Blast Furnace Ironmaking [Dissertation], Tianjin University of Technology, Tianjin, 2017, p. 37.
      [67]
      Q. Zhang, T.H. Yao, J.J. Cai, and F.M. Shen, On the multi-objective optimal model of blast furnace ironmaking process and its application, J. Northeastern Univ. Nat. Sci., 32(2011), No. 2, p. 270. doi: 10.3969/j.issn.1005-3026.2011.02.029

    Catalog


    • /

      返回文章
      返回