留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 11
Nov.  2023

图(9)  / 表(6)

数据统计

分享

计量
  • 文章访问数:  979
  • HTML全文浏览量:  372
  • PDF下载量:  86
  • 被引次数: 0
Yang Xue, Xiaoming Liu, Chunbao (Charles) Xu, and Yonghui Han, Hydrometallurgical detoxification and recycling of electric arc furnace dust, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2076-2094. https://doi.org/10.1007/s12613-023-2637-2
Cite this article as:
Yang Xue, Xiaoming Liu, Chunbao (Charles) Xu, and Yonghui Han, Hydrometallurgical detoxification and recycling of electric arc furnace dust, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2076-2094. https://doi.org/10.1007/s12613-023-2637-2
引用本文 PDF XML SpringerLink
特约综述

湿法冶金技术实现电炉灰的无害化和回收利用



  • 通讯作者:

    刘晓明    E-mail: liuxm@ustb.edu.cn

    徐春保    E-mail: cxu6@uwo.ca

    韩永辉    E-mail: hebeihyh@126.com

文章亮点

  • (1) 系统地分析了电炉灰的产生过程和重金属在该过程的迁移规律
  • (2) 深入地剖析了各湿法处置电炉灰技术的反应机理和优缺点
  • (3) 提出了两种有应用潜力的电炉灰处置新技术
  • 随着我国废钢量的逐步提升,电炉炼钢技术的发展,以及国家环保政策的提倡,我国电炉钢产量逐年递增。《工业领域碳达峰实施方案》要求到2025年和2030年,短流程炼钢在粗钢总产能中的占比要分别达15%和20%以上。电炉炼钢过程中每生产1吨钢约产生10–20kg电炉灰。电炉灰是一种工业有害固体废物,但也是含锌、铁等有价元素的潜在二次资源。近年来,在国家环保政策的提倡下,电炉灰无害化处置和资源化利用的相关湿法冶金技术得到了飞速发展。本文总结了电炉灰的产生机理、成分和特性,并对电炉灰的湿法冶金处理方法,如酸浸法、碱浸法、盐浸法和预处理强化浸出法等进行了深入地剖析和对比。同时阐明了电炉灰中含锌相在酸/碱溶液中和预处理过程中的矿相转变机理。最后,本文提出了两种电炉灰湿法冶金处理新方法,即氧压硫酸浸出并制备复合催化剂,以及电炉灰与城市生活垃圾焚烧飞灰协同无害化–碱浸提锌工艺,为EAFD的无害化和高附加值利用提供了新思路。
  • Invited Review

    Hydrometallurgical detoxification and recycling of electric arc furnace dust

    + Author Affiliations
    • Electric arc furnace dust (EAFD) is a hazardous waste but can also be a potential secondary resource for valuable metals, such as Zn and Fe. Given the increased awareness of carbon emission reduction, energy conservation, and environmental protection, hydrometallurgical technologies for the detoxification and resource use of EAFD have been developing rapidly. This work summarizes the generation mechanisms, compositions, and characteristics of EAFD and presents a critical review of various hydrometallurgical treatment methods for EAFD, e.g., acid leaching, alkaline leaching, salt leaching, and pretreatment–enhanced leaching methods. Simultaneously, the phase transformation mechanisms of zinc-containing components in acid and alkali solutions and pretreatment processes are expounded. Finally, two novel combined methods, i.e., oxygen pressure sulfuric acid leaching combined with composite catalyst preparation, and synergistic roasting of EAFD and municipal solid waste incineration fly ash combined with alkaline leaching, are proposed, which can provide future development directions to completely recycling EAFD by recovering valuable metals and using zinc residue.
    • loading
    • Supplementary Information-10.1007s12613-023-2637-2.docx
    • [1]
      National Bureau of Statistics of China, China Statistical Yearbook2021, 2021 [2022-10-24], China Statistics Press. http://www.stats.gov.cn/sj/ndsj/2021/indexch.htm.
      [2]
      J.A. de Araújo and V. Schalch, Recycling of electric arc furnace (EAF) dust for use in steel making process, J. Mater. Res. Technol., 3(2014), No. 3, p. 274. doi: 10.1016/j.jmrt.2014.06.003
      [3]
      F. Kukurugya, T. Vindt, and T. Havlík, Behavior of zinc, iron and calcium from electric arc furnace (EAF) dust in hydrometallurgical processing in sulfuric acid solutions: Thermodynamic and kinetic aspects, Hydrometallurgy, 154(2015), p. 20. doi: 10.1016/j.hydromet.2015.03.008
      [4]
      [5]
      R.A. Shawabkeh, Hydrometallurgical extraction of zinc from Jordanian electric arc furnace dust, Hydrometallurgy, 104(2010), No. 1, p. 61. doi: 10.1016/j.hydromet.2010.04.014
      [6]
      B. Das, S. Prakash, P.S.R. Reddy, and V.N. Misra, An overview of utilization of slag and sludge from steel industries, Resour. Conserv. Recycl., 50(2007), No. 1, p. 40. doi: 10.1016/j.resconrec.2006.05.008
      [7]
      L.J. Jia, K.Q. Hu, E.Z. Jiang, et al., A new strategy for the reuse of typical hazardous solid waste electric arc furnace dust (EAFD): Efficient desulfurization by EAFD slurry, Sep. Purif. Technol., 308(2023), art. No. 122980. doi: 10.1016/j.seppur.2022.122980
      [8]
      C.J. Chung, C.D. Wu, B.F. Hwang, et al., Effects of ambient PM2.5 and particle-bound metals on the healthy residents living near an electric arc furnace: A community-based study, Sci. Total Environ., 728(2020), art. No. 138799. doi: 10.1016/j.scitotenv.2020.138799
      [9]
      J.R. Donald and C.A. Pickles, Reduction of electric arc furnace dust with solid iron powder, Can. Metall. Q., 35(1996), No. 3, p. 255. doi: 10.1179/cmq.1996.35.3.255
      [10]
      G. Salihoglu and V. Pinarli, Steel foundry electric arc furnace dust management: Stabilization by using lime and Portland cement, J. Hazard. Mater., 153(2008), No. 3, p. 1110. doi: 10.1016/j.jhazmat.2007.09.066
      [11]
      P. Kavouras, T. Kehagias, I. Tsilika, et al., Glass-ceramic materials from electric arc furnace dust, J. Hazard. Mater., 139(2007), No. 3, p. 424. doi: 10.1016/j.jhazmat.2006.02.043
      [12]
      C.A. Pickles, Thermodynamic analysis of the selective carbothermic reduction of electric arc furnace dust, J. Hazard. Mater., 150(2008), No. 2, p. 265. doi: 10.1016/j.jhazmat.2007.04.097
      [13]
      D.J.C. Stewart and A.R. Barron, Pyrometallurgical removal of zinc from basic oxygen steelmaking dust – A review of best available technology, Resour. Conserv. Recycl., 157(2020), art. No. 104746. doi: 10.1016/j.resconrec.2020.104746
      [14]
      X.L. Lin, Z.W. Peng, J.X. Yan, et al., Pyrometallurgical recycling of electric arc furnace dust, J. Clean. Prod., 149(2017), p. 1079. doi: 10.1016/j.jclepro.2017.02.128
      [15]
      J. Wang, Y.Y. Zhang, K.K. Cui, et al., Pyrometallurgical recovery of zinc and valuable metals from electric arc furnace dust – A review, J. Clean. Prod., 298(2021), art. No. 126788. doi: 10.1016/j.jclepro.2021.126788
      [16]
      M. Al-harahsheh, S. Kingman, L. Al-Makhadmah, and I.E. Hamilton, Microwave treatment of electric arc furnace dust with PVC: Dielectric characterization and pyrolysis-leaching, J. Hazard. Mater., 274(2014), p. 87. doi: 10.1016/j.jhazmat.2014.03.019
      [17]
      G. Díaz, D. Martín, C. Frías, and F. Sánchez, Emerging applications of ZINCEX and PLACID technologies, JOM, 53(2001), No. 12, p. 30. doi: 10.1007/s11837-001-0009-8
      [18]
      M.K. Jha, V. Kumar, and R.J. Singh, Review of hydrometallurgical recovery of zinc from industrial wastes, Resour. Conserv. Recycl., 33(2001), No. 1, p. 1. doi: 10.1016/S0921-3449(00)00095-1
      [19]
      M. Al-Harahsheh, S. Altarawneh, M. Al-Omari, M. Altarawneh, S. Kingman, and C. Dodds, Leaching behavior of zinc and lead from electric arc furnace dust – Poly(vinyl) chloride residues after oxidative thermal treatment, J. Clean. Prod., 328(2021), art. No. 129622. doi: 10.1016/j.jclepro.2021.129622
      [20]
      S.X. Bao, Y.P. Luo, and Y.M. Zhang, Fabrication of green one-part geopolymer from silica-rich vanadium tailing via thermal activation and modification, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 177. doi: 10.1007/s12613-020-2182-1
      [21]
      D.C. Zhang, H.B. Ling, T.Z. Yang, W.F. Liu, and L. Chen, Selective leaching of zinc from electric arc furnace dust by a hydrothermal reduction method in a sodium hydroxide system, J. Clean. Prod., 224(2019), p. 536. doi: 10.1016/j.jclepro.2019.03.149
      [22]
      M. Kaya, S. Hussaini, and S. Kursunoglu, Critical review on secondary zinc resources and their recycling technologies, Hydrometallurgy, 195(2020), art. No. 105362. doi: 10.1016/j.hydromet.2020.105362
      [23]
      Y.F. Chen, W.X. Teng, X. Feng, et al., Efficient extraction and separation of zinc and iron from electric arc furnace dust by roasting with FeSO4·7H2O followed by water leaching, Sep. Purif. Technol., 281(2022), art. No. 119936. doi: 10.1016/j.seppur.2021.119936
      [24]
      S.M. Moosavi Nezhad and A. Zabett, Thermodynamic analysis of the carbothermic reduction of electric arc furnace dust in the presence of ferrosilicon, Calphad, 52(2016), p. 143. doi: 10.1016/j.calphad.2015.11.003
      [25]
      D.S. Baik and D.J. Fray, Recovery of zinc from electric-arc furnace dust by leaching with aqueous hydrochloric acid, plating of zinc and regeneration of electrolyte, Miner. Process. Extr. Metall., 109(2000), No. 3, p. 121. doi: 10.1179/mpm.2000.109.3.121
      [26]
      T. Suetens, M. Guo, K. Van Acker, and B. Blanpain, Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system, J. Hazard. Mater., 287(2015), p. 180. doi: 10.1016/j.jhazmat.2015.01.050
      [27]
      M. Omran and T. Fabritius, Utilization of blast furnace sludge for the removal of zinc from steelmaking dusts using microwave heating, Sep. Purif. Technol., 210(2019), p. 867. doi: 10.1016/j.seppur.2018.09.010
      [28]
      V.S. Silva, J.S. Silva, B. dos S Costa, C. Labes, and R.M.P.B. Oliveira, Preparation of glaze using electric-arc furnace dust as raw material, J. Mater. Res. Technol., 8(2019), No. 6, p. 5504. doi: 10.1016/j.jmrt.2019.09.018
      [29]
      R. Chairaksa-Fujimoto, K. Maruyama, T. Miki, and T. Nagasaka, The selective alkaline leaching of zinc oxide from Electric Arc Furnace dust pre-treated with calcium oxide, Hydrometallurgy, 159(2016), p. 120. doi: 10.1016/j.hydromet.2015.11.009
      [30]
      J.H. Lee, K.S. Han, K.T. Hwang, and J.H. Kim, Recycling of steelmaking electric arc furnace dust into aqueous cyan ceramic ink for inkjet printing process and its printability, Ceram. Int., 47(2021), No. 12, p. 16964. doi: 10.1016/j.ceramint.2021.03.005
      [31]
      M.C. Arnold, A.S. de Vargas, and L. Bianchini, Study of electric-arc furnace dust (EAFD) in fly ash and rice husk ash-based geopolymers, Adv. Powder Technol., 28(2017), No. 9, p. 2023. doi: 10.1016/j.apt.2017.05.007
      [32]
      M.C. da Silva, A.M. Bernardes, C.P. Bergmann, J.A.S. Tenório, and D.C.R. Espinosa, Characterisation of electric arc furnace dust generated during plain carbon steel production, Ironmaking Steelmaking, 35(2008), No. 4, p. 315. doi: 10.1179/030192307X232936
      [33]
      A. Nazari, A. Shafyei, and A. Saidi, Recycling of electric arc furnace dust into glass-ceramic, Mater. Chem. Phys., 205(2018), p. 436. doi: 10.1016/j.matchemphys.2017.11.045
      [34]
      K. Brunelli and M. Dabalà, Ultrasound effects on zinc recovery from EAF dust by sulfuric acid leaching, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 353. doi: 10.1007/s12613-015-1080-4
      [35]
      J.F. Tang, M.H. Su, L.Z. Wei, et al., Comprehensive evaluation of the effectiveness on metals recovery and decontamination from MSWI fly ash by an integrating hydrometallurgical process in Guangzhou, Sci. Total Environ., 728(2020), art. No. 138809. doi: 10.1016/j.scitotenv.2020.138809
      [36]
      C.C. Yang, D.Q. Zhu, J. Pan, S.W. Li, and H.Y. Tian, A novel process for Fe recovery and Zn, Pb removal from a low-grade pyrite cinder with high Zn and Pb contents, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 981. doi: 10.1007/s12613-018-1648-x
      [37]
      T. Havlík, B.V.E. Souza, A.M. Bernardes, I.A.H. Schneider, and A. Miškufová, Hydrometallurgical processing of carbon steel EAF dust, J. Hazard. Mater., 135(2006), No. 1-3, p. 311. doi: 10.1016/j.jhazmat.2005.11.067
      [38]
      H.G. Wang, Y. Li, J.M. Gao, M. Zhang, and M. Guo, A novel hydrothermal method for zinc extraction and separation from zinc ferrite and electric arc furnace dust, Int. J. Miner. Metall. Mater., 23(2016), No. 2, p. 146. doi: 10.1007/s12613-016-1221-4
      [39]
      O. Ruiz, C. Clemente, M. Alonso, and F.J. Alguacil, Recycling of an electric arc furnace flue dust to obtain high grade ZnO, J. Hazard. Mater., 141(2007), No. 1, p. 33. doi: 10.1016/j.jhazmat.2006.06.079
      [40]
      M.C. Siame, J. Kaoma, N. Hlabangana, and G. Danha, An attainable region approach for the recovery of iron and zinc from electric arc furnace dust, S. Afr. J. Chem. Eng., 27(2019), p. 35. doi: 10.1016/j.sajce.2018.12.002
      [41]
      S.S. Lim, J.M. Fontmorin, H.T. Pham, et al., Zinc removal and recovery from industrial wastewater with a microbial fuel cell: Experimental investigation and theoretical prediction, Sci. Total Environ., 776(2021), art. No. 145934. doi: 10.1016/j.scitotenv.2021.145934
      [42]
      V. Montenegro, P. Oustadakis, P.E. Tsakiridis, and S. Agatzini-Leonardou, Hydrometallurgical treatment of steelmaking electric arc furnace dusts (EAFD), Metall. Mater. Trans. B, 44(2013), No. 5, p. 1058. doi: 10.1007/s11663-013-9874-0
      [43]
      H.L. Shen, B. Liu, C. Ekberg, and S.G. Zhang, Harmless disposal and resource utilization for secondary aluminum dross: A review, Sci. Total Environ., 760(2021), art. No. 143968. doi: 10.1016/j.scitotenv.2020.143968
      [44]
      M. Kul, K.O. Oskay, M. Şİmşİr, H. Sübütay, and H. Kirgezen, Optimization of selective leaching of Zn from electric arc furnace steelmaking dust using response surface methodology, Trans. Nonferrous Met. Soc. China, 25(2015), No. 8, p. 2753. doi: 10.1016/S1003-6326(15)63900-0
      [45]
      Š. Langová and D. Matýsek, Zinc recovery from steel-making wastes by acid pressure leaching and hematite precipitation, Hydrometallurgy, 101(2010), No. 3-4, p. 171. doi: 10.1016/j.hydromet.2010.01.003
      [46]
      Y.Y. Teo, H.S. Lee, Y.C. Low, S.W. Choong, and K.O. Low, Hydrometallurgical extraction of zinc and iron from electric arc furnace dust (EAFD) using hydrochloric acid, J. Phys. Sci., 29(2018), No. 3, p. 49. doi: 10.21315/jps2018.29.s3.6
      [47]
      Š. Langová, J. Leško, and D. Matýsek, Selective leaching of zinc from zinc ferrite with hydrochloric acid, Hydrometallurgy, 95(2009), No. 3-4, p. 179. doi: 10.1016/j.hydromet.2008.05.040
      [48]
      P. Halli, J. Hamuyuni, M. Leikola, and M. Lundström, Developing a sustainable solution for recycling electric arc furnace dust via organic acid leaching, Miner. Eng., 124(2018), p. 1. doi: 10.1016/j.mineng.2018.05.011
      [49]
      P. Palimąka, S. Pietrzyk, M. Stępień, K. Ciećko, and I. Nejman, Zinc recovery from steelmaking dust by hydrometallurgical methods, Metals, 8(2018), No. 7, art. No. 547. doi: 10.3390/met8070547
      [50]
      A.J.B. Dutra, P.R.P. Paiva, and L.M. Tavares, Alkaline leaching of zinc from electric arc furnace steel dust, Miner. Eng., 19(2006), No. 5, p. 478. doi: 10.1016/j.mineng.2005.08.013
      [51]
      C. Peppicelli, P. Cleall, D. Sapsford, and M. Harbottle, Changes in metal speciation and mobility during electrokinetic treatment of industrial wastes: Implications for remediation and resource recovery, Sci. Total Environ., 624(2018), p. 1488. doi: 10.1016/j.scitotenv.2017.12.132
      [52]
      J.M. Steer and A.J. Griffiths, Investigation of carboxylic acids and non-aqueous solvents for the selective leaching of zinc from blast furnace dust slurry, Hydrometallurgy, 140(2013), p. 34. doi: 10.1016/j.hydromet.2013.08.011
      [53]
      J.X. Wang, Z. Wang, Z.Z. Zhang, and G.Q. Zhang, Removal of zinc from basic oxygen steelmaking filter cake by selective leaching with butyric acid, J. Clean. Prod., 209(2019), p. 1. doi: 10.1016/j.jclepro.2018.10.253
      [54]
      D.K. Xia and C.A. Pickles, Kinetics of zinc ferrite leaching in caustic media in the deceleratory period, Miner. Eng., 12(1999), No. 6, p. 693. doi: 10.1016/S0892-6875(99)00052-7
      [55]
      X.H. Meng and K.N. Han, The principles and applications of ammonia leaching of metals—A review, Miner. Process. Extr. Metall. Rev., 16(1996), No. 1, p. 23. doi: 10.1080/08827509608914128
      [56]
      M.B. Fu, J.G. Hu, Y. Li, Y.X. Song, H.P. Hu, and Q.Y. Chen, A novel strategy achieving enrichment of metal values from and into ammoniacal solutions, Sep. Purif. Technol., 151(2015), p. 97. doi: 10.1016/j.seppur.2015.07.035
      [57]
      X.G. Luo, C. Wei, X.B. Li, Z.G. Deng, M.T. Li, and G. Fan, The use of carbon-dioxide to enhance the solvent extraction of zinc from ammonia leaching solutions of blast furnace dust, Hydrometallurgy, 197(2020), art. No. 105458. doi: 10.1016/j.hydromet.2020.105458
      [58]
      J.G. Hu, Q.Y. Chen, H.P. Hu, Q.A. Ma, Z.L. Yin, and F.C. Hu, Extraction of zinc(II) from ammoniacal solution into hydrophobic ionic liquids, J. Chem. Technol. Biotechnol., 88(2013), No. 4, p. 644. doi: 10.1002/jctb.3880
      [59]
      A.Y. Ma, L.B. Zhang, J.H. Peng, et al., Extraction of zinc from blast furnace dust in ammonia leaching system, Green Process. Synth., 5(2016), No. 1, p. 23. doi: 10.1515/gps-2015-0051
      [60]
      T. Havlik, B. Friedrich, and S. Stopić, Pressure leaching of EAF dust with sulphuric acid, ERZMETALL, 57(2004), No. 2, p. 113.
      [61]
      P. Van Herck, C. Vandecasteele, R. Swennen, and R. Mortier, Zinc and lead removal from blast furnace sludge with a hydrometallurgical process, Environ. Sci. Technol., 34(2000), No. 17, p. 3802. doi: 10.1021/es991033l
      [62]
      N. Leclerc, E. Meux, and J.M. Lecuire, Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride, J. Hazard. Mater., 91(2002), No. 1-3, p. 257. doi: 10.1016/S0304-3894(01)00394-6
      [63]
      H.G. Wang, N.N. Jia, W.W. Liu, M. Zhang, and M. Guo, Efficient and selective hydrothermal extraction of zinc from zinc-containing electric arc furnace dust using a novel bifunctional agent, Hydrometallurgy, 166(2016), p. 107. doi: 10.1016/j.hydromet.2016.10.013
      [64]
      J.G. Hernández and C. Bolm, Altering product selectivity by mechanochemistry, J. Org. Chem., 82(2017), No. 8, p. 4007. doi: 10.1021/acs.joc.6b02887
      [65]
      L. Tian, A. Gong, X.G. Wu, X.Q. Yu, Z.F. Xu, and L.J. Chen, Process and kinetics of the selective extraction of cobalt from high-silicon low-grade cobalt ores using ammonia leaching, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 218. doi: 10.1007/s12613-020-2161-6
      [66]
      W. Chen, S.H. Yin, and I.M.S.K. Ilankoon, Effects of forced aeration on community dynamics of free and attached bacteria in copper sulphide ore bioleaching, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 59. doi: 10.1007/s12613-020-2125-x
      [67]
      Z.W. Zhao, S. Long, A.L. Chen, et al., Mechanochemical leaching of refractory zinc silicate (hemimorphite) in alkaline solution, Hydrometallurgy, 99(2009), No. 3-4, p. 255. doi: 10.1016/j.hydromet.2009.08.001
      [68]
      C. Zhang, L. Zhang, J. Wang, J. Bai, and W. Yuan, Extraction of zinc from zinc ferrites by alkaline leaching: Enhancing recovery by mechanochemical reduction with metallic iron, J. South. Afr. Inst. Min. Metall., 116(2016), No. 7, p. 1111. doi: 10.17159/2411-9717/2016/v116n12a3
      [69]
      V.V. Boldyrev, Mechanochemistry and mechanical activation of solids, Solid State Ionics, 63-65(1993), p. 537. doi: 10.1016/0167-2738(93)90157-X
      [70]
      H. Kaneko, T. Kodama, N. Gokon, Y. Tamaura, K. Lovegrove, and A. Luzzi, Decomposition of Zn-ferrite for O2 generation by concentrated solar radiation, Sol. Energy, 76(2004), No. 1-3, p. 317. doi: 10.1016/j.solener.2003.08.034
      [71]
      D.K. Xia and C.A. Pickles, Caustic roasting and leaching of electric arc furnace dust, Can. Metall. Q., 38(1999), No. 3, p. 175. doi: 10.1179/cmq.1999.38.3.175
      [72]
      J.Y. Xiang, Q.Y. Huang, X.W. Lv, and C.G. Bai, Extraction of vanadium from converter slag by two-step sulfuric acid leaching process, J. Clean. Prod., 170(2018), p. 1089. doi: 10.1016/j.jclepro.2017.09.255
      [73]
      M. Gan, X.H. Fan, X.L. Chen, et al., Reaction mechanisms of low-grade molybdenum concentrate during calcification roasting process, Trans. Nonferrous Met. Soc. China, 26(2016), No. 11, p. 3015. doi: 10.1016/S1003-6326(16)64432-1
      [74]
      S.H. Geng, G.S. Li, Y. Zhao, et al., Extraction of valuable metals from low nickel matte by calcified roasting–acid leaching process, Trans. Nonferrous Met. Soc. China, 29(2019), No. 10, p. 2202. doi: 10.1016/S1003-6326(19)65126-5
      [75]
      H. Lv, M.Z. Xie, L.T. Shi, et al., A novel green process for the synthesis of high-whiteness and ultrafine aluminum hydroxide powder from secondary aluminum dross, Ceram. Int., 48(2022), No. 1, p. 953. doi: 10.1016/j.ceramint.2021.09.180
      [76]
      T. Miki, R. Chairaksa-Fujimoto, K. Maruyama, and T. Nagasaka, Hydrometallurgical extraction of zinc from CaO treated EAF dust in ammonium chloride solution, J. Hazard. Mater., 302(2016), p. 90. doi: 10.1016/j.jhazmat.2015.09.020
      [77]
      R. Chairaksa-Fujimoto, Y. Inoue, N. Umeda, S. Itoh, and T. Nagasaka, New pyrometallurgical process of EAF dust treatment with CaO addition, Int. J. Miner. Metall. Mater., 22(2015), No. 8, p. 788. doi: 10.1007/s12613-015-1135-6
      [78]
      J.H. Zhang, W. Zhang, L. Zhang, and S.Q. Gu, Mechanism of vanadium slag roasting with calcium oxide, Int. J. Miner. Process., 138(2015), p. 20. doi: 10.1016/j.minpro.2015.03.007
      [79]
      Y.C. Li, S.N. Zhuo, B. Peng, X.B. Min, H. Liu, and Y. Ke, Comprehensive recycling of zinc and iron from smelting waste containing zinc ferrite by oriented transformation with SO2, J. Clean. Prod., 263(2020), art. No. 121468. doi: 10.1016/j.jclepro.2020.121468
      [80]
      Y.C. Li, H. Liu, B. Peng, et al., Study on separating of zinc and iron from zinc leaching residues by roasting with ammonium sulphate, Hydrometallurgy, 158(2015), p. 42. doi: 10.1016/j.hydromet.2015.10.004
      [81]
      M. Sadat-Shojai and G.R. Bakhshandeh, Recycling of PVC wastes, Polym. Degrad. Stab., 96(2011), No. 4, p. 404. doi: 10.1016/j.polymdegradstab.2010.12.001
      [82]
      S.C. Oh, W.T. Kwon, and S.R. Kim, Dehydrochlorination characteristics of waste PVC wires by thermal decomposition, J. Ind. Eng. Chem., 15(2009), No. 3, p. 438. doi: 10.1016/j.jiec.2008.11.010
      [83]
      M. Al-Harahsheh, S. Altarawneh, and M. Al-Omari, Selective dissolution of zinc and lead from electric arc furnace dust via oxidative thermolysis with polyvinyl chloride and water-leaching process, Hydrometallurgy, 212(2022), art. No. 105898. doi: 10.1016/j.hydromet.2022.105898
      [84]
      Y. Xue and X.M. Liu, Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review, Chem. Eng. J., 420(2021), art. No. 130349. doi: 10.1016/j.cej.2021.130349
      [85]
      C.X. Li, L. Xia, J.C. Xiong, W.B. Ji, X.T. Lin, and Y.G. Wu, Mechanism analysis of iron precipitation process in zinc hydrometallurgy by hematite method, China Nonferrous Metall., 49(2020), No. 5, p. 16.
      [86]
      J.E. Dutrizac and A. Sunyer, Hematite formation from jarosite type compounds by hydrothermal conversion, Can. Metall. Q., 51(2012), No. 1, p. 11. doi: 10.1179/1879139511Y.0000000019
      [87]
      Y. Xue, X.M. Liu, N. Zhang, S. Guo, Z.Q. Xie, and C.B. Xu, A novel process for the treatment of steelmaking converter dust: Selective leaching and recovery of zinc sulfate and synthesis of iron oxides@HTCC photocatalysts by carbonizing carbohydrates, Hydrometallurgy, 217(2023), art. No. 106039. doi: 10.1016/j.hydromet.2023.106039
      [88]
      Z.F. Hu, Z.R. Shen, and J.C. Yu, Converting carbohydrates to carbon-based photocatalysts for environmental treatment, Environ. Sci. Technol., 51(2017), No. 12, p. 7076. doi: 10.1021/acs.est.7b00118
      [89]
      P.A. Behnisch, K. Hosoe, K. Shiozaki, H. Ozaki, K. Nakamura, and S.I. Sakai, Low-temperature thermal decomposition of dioxin-like compounds in fly ash: Combination of chemical analysis with in vitro bioassays (EROD and DR-CALUX), Environ. Sci. Technol., 36(2002), No. 23, p. 5211. doi: 10.1021/es025599c
      [90]
      Y.Q. Peng, J.H. Chen, S.Y. Lu, et al., Chlorophenols in municipal solid waste incineration: A review, Chem. Eng. J., 292(2016), p. 398. doi: 10.1016/j.cej.2016.01.102
      [91]
      M.M. Trinh and M.B. Chang, Catalytic pyrolysis: New approach for destruction of POPs in MWIs fly ash, Chem. Eng. J., 405(2021), art. No. 126718. doi: 10.1016/j.cej.2020.126718

    Catalog


    • /

      返回文章
      返回