留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(8)

数据统计

分享

计量
  • 文章访问数:  1129
  • HTML全文浏览量:  413
  • PDF下载量:  57
  • 被引次数: 0
Tao Wei, Qi Zhang, Sijia Wang, Mengting Wang, Ye Liu, Cheng Sun, Yanyan Zhou, Qing Huang, Xiangyun Qiu, and Fang Tian, A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1897-1905. https://doi.org/10.1007/s12613-023-2639-0
Cite this article as:
Tao Wei, Qi Zhang, Sijia Wang, Mengting Wang, Ye Liu, Cheng Sun, Yanyan Zhou, Qing Huang, Xiangyun Qiu, and Fang Tian, A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1897-1905. https://doi.org/10.1007/s12613-023-2639-0
引用本文 PDF XML SpringerLink
研究论文

IL@UiO-66-NH2作为凝胶聚合物电解质的有效填料及其在高性能全固态锂金属电池中的应用



  • 通讯作者:

    魏涛    E-mail: wt863@just.edu.cn

文章亮点

  • (1) 系统地研究了离子液体含量对纳米级别的UiO-66-NH2的改性作用。
  • (2) 提出并验证了适量地添加离子液体可在充放电循环中发生氧化分解,从而促进稳定的SEI生成的机理。
  • (3) 总结了离子液体的适量添加可以使聚合物基全固态电解质表现出更为优异的电化学性能的影响规律。
  • 随着电动汽车领域和各种储能系统的飞速发展,既具有高能量密度又具备高安全性的新型全固态锂离子电池映入了研究人员的眼帘。然而,固体电极与固态电解质之间的固-固接触可能会导致较大的界面电阻。近年来,离子液体由于具有较宽的电化学窗口(~6 V)和较高的离子电导率,也常常被用来作为固态电解质膜中的添加剂或溶剂以进一步制备凝胶聚合物电解质。本文旨在开发一种以适量离子液体加入MOFs孔内作为有效填料的凝胶聚合物电解质。本文制备了不同离子液体含量的MOFs纳米颗粒,并采用简单的流延法制备了新型凝胶聚合物电解质。同时对其进行了电化学测试,最后还将其与商业正极组装成全固态电池以进行恒电流充放电试验。研究了不同离子液体含量的MOFs纳米颗粒对固态电池电化学性能的影响。研究结果表明, 适量添加离子液体可以有效地提升凝胶聚合物电解质的电化学性能(离子电导率、锂离子迁移数、电化学窗口等),UPP-5在60°C下的离子电导率为4.842 × 10−4 S·cm−1,离子迁移数为0.52,电化学窗口可高达5.5 V。此外,Li/UPP-5/LiFePO4的全固态电池在0.2C的倍率下可稳定循环超过100个周期,且几乎没有任何容量衰减。这项研究可以为未来开发新一代全固态锂离子电池(ASSLB)创造更为有效的Li+ 导电网络提供新的见解。
  • Research Article

    A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries

    + Author Affiliations
    • All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage, but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li+ transport kinetics due to the solid–solid contacts between the electrodes and the solid-state electrolytes. Herein, a novel gel polymer electrolyte (UPP-5) composed of ionic liquid incorporated metal-organic frameworks nanoparticles (IL@MOFs) is designed, it exhibits satisfying electrochemical performances, consisting of an excellent electrochemical stability window (5.5 V) and an improved Li+ transference number of 0.52. Moreover, the Li/UPP-5/LiFePO4 full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities. This study might provide new insight to create an effective Li+ conductive network for the development of all-solid-state lithium-ion batteries.
    • loading
    • Supplementary Information-10.1007s12613-023-2639-0.docx
    • [1]
      M.S. Balogun, W.T. Qiu, Y. Luo, et al., A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials, Nano Res., 9(2016), No. 10, p. 2823. doi: 10.1007/s12274-016-1171-1
      [2]
      J. Liu, Z.N. Bao, Y. Cui, et al., Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy, 4(2019), No. 3, p. 180. doi: 10.1038/s41560-019-0338-x
      [3]
      Y. Wang, W.D. Richards, S.P. Ong, et al., Design principles for solid-state lithium superionic conductors, Nat. Mater., 14(2015), No. 10, p. 1026. doi: 10.1038/nmat4369
      [4]
      C. Yu, S. Ganapathy, E.R.H. van Eck, et al., Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface, Nat. Commun., 8(2017), No. 1, art. No. 1086. doi: 10.1038/s41467-017-01187-y
      [5]
      Y.L. Zhao, X.Z. Yuan, L.B. Jiang, et al., Regeneration and reutilization of cathode materials from spent lithium-ion batteries, Chem. Eng. J., 383(2020), art. No. 123089. doi: 10.1016/j.cej.2019.123089
      [6]
      T. Wei, Z.H. Zhang, Z.Y. Zhu, et al., Recycling of waste plastics and scalable preparation of Si/CNF/C composite as anode material for lithium-ion batteries, Ionics, 25(2019), No. 4, p. 1523. doi: 10.1007/s11581-019-02892-y
      [7]
      J.B. Zhou, P. Chen, W. Wang, and X. Zhang, Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: Structure, synthesis, and applications, Chem. Eng. J., 446(2022), art. No. 137041. doi: 10.1016/j.cej.2022.137041
      [8]
      F.Y. Wang, Y.S. Ye, Z.M. Wang, et al., MOF-derived Co3O4@rGO nanocomposites as anodes for high-performance lithium-ion batteries, Ionics, 27(2021), No. 10, p. 4197. doi: 10.1007/s11581-021-04225-4
      [9]
      T. Wei, Y.Y. Zhou, C. Sun, et al., Prestoring lithium into SnO2 coated 3D carbon fiber cloth framework as dendrite-free lithium metal anode, Particuology, 84(2024), p. 89. doi: 10.1016/j.partic.2023.03.008
      [10]
      Z.H. Chen, I. Belharouak, Y.K. Sun, and K. Amine, Titanium-based anode materials for safe lithium-ion batteries, Adv. Funct. Mater., 23(2013), No. 8, p. 959. doi: 10.1002/adfm.201200698
      [11]
      Z.H. Gao, S. Rao, T.Y. Zhang, et al., Design strategies of flame-retardant additives for lithium ion electrolyte, J. Electrochem. Energy Convers. Storage, 19(2022), No. 3, art. No. 030910. doi: 10.1115/1.4053968
      [12]
      L.P. Zhang, X.L. Li, M.R. Yang, and W.H. Chen, High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective, Energy Storage Mater., 41(2021), p. 522. doi: 10.1016/j.ensm.2021.06.033
      [13]
      Z.H. Zhang, T. Wei, J.H. Lu, et al., Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1565. doi: 10.1007/s12613-020-2239-1
      [14]
      D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, and G.X. Wang, Polymer electrolytes for lithium-based batteries: Advances and prospects, Chem, 5(2019), No. 9, p. 2326. doi: 10.1016/j.chempr.2019.05.009
      [15]
      J.H. Lu, Z.M. Wang, Q. Zhang, et al., The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries, Chin. J. Chem. Eng., (2023)
      [16]
      Z.F. Ruan, Y.Z. Du, H.F. Pan, et al., Incorporation of poly(ionic liquid) with PVDF-HFP-based polymer electrolyte for all-solid-state lithium-ion batteries, Polymers, 14(2022), No. 10, art. No. 1950. doi: 10.3390/polym14101950
      [17]
      X.X. Wu, K.Y. Chen, Z.G. Yao, et al., Metal organic framework reinforced polymer electrolyte with high cation transference number to enable dendrite-free solid state Li metal conversion batteries, J. Power Sources, 501(2021), art. No. 229946. doi: 10.1016/j.jpowsour.2021.229946
      [18]
      Z.L. Xiao, T.Y. Long, L.B. Song, Y.H. Zheng, and C. Wang, Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries, Ionics, 28(2022), No. 1, p. 15. doi: 10.1007/s11581-021-04340-2
      [19]
      Q.Y. Guo, F.L. Xu, L. Shen, et al., 20  μ m-thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries, Energy Mater. Adv., 2022(2022), art. No. 9753506.
      [20]
      Z.Y. Wang, L. Shen, S.G. Deng, P. Cui, and X.Y. Yao, 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries, Adv. Mater., 33(2021), No. 25, art. No. 2100353. doi: 10.1002/adma.202100353
      [21]
      Q. Zhang, S.J. Wang, Y. Liu, et al., UiO-66-NH2 @67 core–shell metal-organic framework as fillers in solid composite electrolytes for high-performance all-solid-state lithium metal batteries, Energy Technol., 11(2023), No. 4, art. No. 2201438. doi: 10.1002/ente.202201438
      [22]
      C.W. Sun, J. Liu, Y.D. Gong, D.P. Wilkinson, and J.J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 33(2017), p. 363. doi: 10.1016/j.nanoen.2017.01.028
      [23]
      Q.Q. Zhang, K. Liu, F. Ding, and X.J. Liu, Recent advances in solid polymer electrolytes for lithium batteries, Nano Res., 10(2017), No. 12, p. 4139. doi: 10.1007/s12274-017-1763-4
      [24]
      R. Dutta and A. Kumar, Ion transport dynamics in ionic liquid incorporated CuBTC-metal-organic framework based composite polymer electrolyte, J. Mater. Sci., 30(2019), No. 2, p. 1117.
      [25]
      T. Wei, J.H. Lu, P. Zhang, et al., Metal-organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries, Chin. Chem. Lett., (2022), art. No. 107947.
      [26]
      T. Wei, J.H. Lu, M.T. Wang, et al., MOF-derived materials enabled lithiophilic 3D hosts for lithium metal anode—A review, Chin. J. Chem., 2023. DOI: 10.1002/cjoc.202200816
      [27]
      Q.Y. Han, S.Q. Wang, Z.Y. Jiang, X.C. Hu, and H.H. Wang, Composite polymer electrolyte incorporating metal-organic framework nanosheets with improved electrochemical stability for all-solid-state Li metal batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 18, p. 20514. doi: 10.1021/acsami.0c03430
      [28]
      T. Wei, Z.H. Zhang, Q. Zhang, et al., Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1636. doi: 10.1007/s12613-021-2289-z
      [29]
      T. Wei, Z.M. Wang, M. Zhang, et al., Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries, Mater. Today Commun., 31(2022), art. No. 103518. doi: 10.1016/j.mtcomm.2022.103518
      [30]
      Z.E. Liu, Z.W. Hu, X.A. Jiang, et al., Metal-organic framework confined solvent ionic liquid enables long cycling life quasi-solid-state lithium battery in wide temperature range, Small, 18(2022), No. 37, art. No. 2203011. doi: 10.1002/smll.202203011
      [31]
      X. Tang, S.Y. Lv, K. Jiang, G.H. Zhou, and X.M. Liu, Recent development of ionic liquid-based electrolytes in lithium-ion batteries, J. Power Sources, 542(2022), art. No. 231792. doi: 10.1016/j.jpowsour.2022.231792
      [32]
      P. Xu, H.Y. Chen, X. Zhou, and H.F. Xiang, Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery, J. Membr. Sci., 617(2021), art. No. 118660. doi: 10.1016/j.memsci.2020.118660
      [33]
      T. Wei, Z.M. Wang, Q. Zhang, et al., Metal-organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: A review, CrystEngComm, 24(2022), No. 28, p. 5014. doi: 10.1039/D2CE00663D
      [34]
      Z.Q. Wang, R. Tan, H.B. Wang, et al., A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery, Adv. Mater., 30(2018), No. 2, art. No. 1704436. doi: 10.1002/adma.201704436
      [35]
      Y. Liu, Q.H. Zeng, P.P. Chen, et al., Modified MOF-based composite all-solid-state polymer electrolyte with improved comprehensive performance for dendrite-free Li-ion batteries, Macromol. Chem. Phys., 223(2022), No. 8, art. No. 2100325. doi: 10.1002/macp.202100325
      [36]
      J. Reiter and M. Nadherna, N-Allyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide—A film forming ionic liquid for graphite anode of Li-ion batteries, Electrochim. Acta, 71(2012), p. 22. doi: 10.1016/j.electacta.2012.03.088
      [37]
      X.M. Gao, Q.T. Qu, G.B. Zhu, et al., Piperidinium-based ionic liquid electrolyte with linear solvent and LiODFB for LiFePO4/Li cells at room and high temperature, RSC Adv., 7(2017), No. 79, p. 50135. doi: 10.1039/C7RA10045K
      [38]
      C.B. Zhu, H. Cheng, and Y. Yang, Electrochemical characterization of two types of PEO-based polymer electrolytes with room-temperature ionic liquids, J. Electrochem. Soc., 155(2008), No. 8, art. No. A569. doi: 10.1149/1.2931523
      [39]
      R. Dutta and A. Kumar, Dielectric relaxation dynamics and AC conductivity scaling of metal-organic framework (MOF-5) based polymer electrolyte nanocomposites incorporated with ionic liquid, J. Phys. D: Appl. Phys., 50(2017), No. 42, art. No. 425302. doi: 10.1088/1361-6463/aa84ef
      [40]
      K. Fujie, K. Otsubo, R. Ikeda, T. Yamada, and H. Kitagawa, Low temperature ionic conductor: Ionic liquid incorporated within a metal-organic framework, Chem. Sci., 6(2015), No. 7, p. 4306. doi: 10.1039/C5SC01398D
      [41]
      Z.L. Hu, X.J. Zhang, and S.M. Chen, A graphene oxide and ionic liquid assisted anion-immobilized polymer electrolyte with high ionic conductivity for dendrite-free lithium metal batteries, J. Power Sources, 477(2020), art. No. 228754. doi: 10.1016/j.jpowsour.2020.228754
      [42]
      T.H. Zhou, Y. Zhao, J.W. Choi, and A. Coskun, Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries, Angew. Chem. Int. Ed., 60(2021), No. 42, p. 22791. doi: 10.1002/anie.202106237
      [43]
      T. Wei, Z.H. Zhang, Z.M. Wang, et al., Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries, ACS Appl. Energy Mater., 3(2020), No. 9, p. 9428. doi: 10.1021/acsaem.0c01872
      [44]
      Q. Zhang, T. Wei, J.H. Lu, et al., The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries, J. Electroanal. Chem., 926(2022), art. No. 116935. doi: 10.1016/j.jelechem.2022.116935
      [45]
      N. Chen, Y. Xing, L.L. Wang, et al., “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery, Nano Energy, 47(2018), p. 35. doi: 10.1016/j.nanoen.2018.02.036
      [46]
      Q.H. Zeng, J.A. Wang, X. Li, et al., Cross-linked chains of metal-organic framework afford continuous ion transport in solid batteries, ACS Energy Lett., 6(2021), No. 7, p. 2434. doi: 10.1021/acsenergylett.1c00583
      [47]
      J.F. Wu and X. Guo, Nanostructured metal-organic framework (MOF)-derived solid electrolytes realizing fast lithium ion transportation kinetics in solid-state batteries, Small, 15(2019), No. 27, art. No. 1902429. doi: 10.1002/smll.201902429
      [48]
      K. Wang, L.Y. Yang, Z.Q. Wang, et al., Enhanced lithium dendrite suppressing capability enabled by a solid-like electrolyte with different-sized nanoparticles, Chem. Commun., 54(2018), No. 93, p. 13060. doi: 10.1039/C8CC07476C
      [49]
      M. Liu, S. Zhang, E.R.H. van Eck, C. Wang, S. Ganapathy, and M. Wagemaker, Improving Li-ion interfacial transport in hybrid solid electrolytes, Nat. Nanotechnol., 17(2022), No. 9, p. 959. doi: 10.1038/s41565-022-01162-9
      [50]
      Z.J. Bi, N. Zhao, L.N. Ma, et al., Interface engineering on cathode side for solid garnet batteries, Chem. Eng. J., 387(2020), art. No. 124089. doi: 10.1016/j.cej.2020.124089
      [51]
      K.X. Liu, Z.Y. Wang, L.Y. Shi, S. Jungsuttiwong, and S. Yuan, Ionic liquids for high performance lithium metal batteries, J. Energy Chem., 59(2021), p. 320. doi: 10.1016/j.jechem.2020.11.017
      [52]
      D.J. Yoo, K.J. Kim, and J.W. Choi, The synergistic effect of cation and anion of an ionic liquid additive for lithium metal anodes, Adv. Energy Mater., 8(2018), No. 11, art. No. 1702744. doi: 10.1002/aenm.201702744

    Catalog


    • /

      返回文章
      返回