留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 8
Aug.  2023

图(10)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  442
  • HTML全文浏览量:  186
  • PDF下载量:  40
  • 被引次数: 0
Brett Holmbergand Liang Cui, Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1474-1489. https://doi.org/10.1007/s12613-023-2640-7
Cite this article as:
Brett Holmbergand Liang Cui, Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1474-1489. https://doi.org/10.1007/s12613-023-2640-7
引用本文 PDF XML SpringerLink
特约综述

诱导养护压力下纤维增强水泥基复合材料界面过渡区的多物理过程以及其对膏体充填技术发展的启示:综述


  • 通讯作者:

    崔亮    E-mail: liang.cui@lakeheadu.ca

文章亮点

  • (1) 总结了诱导养护压力的形成机理。
  • (2) 辨析了诱导养护压力作用下过渡区热–水–力–化多场耦合过程。
  • (3) 揭示了诱导养护压力对纤维增强的控制作用。
  • 本文旨在深入探讨纤维-基质界面过渡区诱导养护压力的形成机理及其对纤维增强水泥基复合材料效能的控制作用。通过对最新研究成果的深入剖析,建立了诱导养护压力(即外部加载条件)、热–水–力–化多场耦合过程(即内在控制机制)以及过渡区行为(即材料行为)之间的联系。在力学过程中,诱导养护压力会改变过渡区应力状态,增强了其多裂纹行为,从而改善了过渡区的稳定性。从渗流过程来看,诱导养护压力能够提高过渡区的渗透性,造成有效应力减弱,并强化了基质与过渡区之间的保水能力的差异。在传热过程中,诱导养护压力会在过渡区中产生陡峭的温度梯度,从而影响温度变化过程,并加剧过渡区微裂纹的萌生。在水化反应过程中,诱导养护压力可以提高水化反应的动力学过程,进而在过渡区中形成更多的水化产物。本综述提供了深入理解纤维增强水泥基复合材料中过渡区行为的一个新视角,并且基于这些发现,提出了热–水–力–化多场耦合建模的方法、多场参量的确定手段及多场耦合研究的未来展望。这些建议对于膏体充填技术的发展具有指导意义,对于纤维增强水泥基复合材料的研究与应用也具有推动作用。
  • Invited Review

    Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review

    + Author Affiliations
    • The mesoscale fiber–matrix interfacial transition zone (FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites (FRCCs). This critical review establishes the link among induced curing pressure (i.e., external loading condition), multiphysics processes (i.e., internal governing mechanism), and interface behavior (i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FM-ITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology.
    • loading
    • [1]
      D. Wu, R.K. Zhao, C.W. Xie, and S. Liu, Effect of curing humidity on performance of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1046. doi: 10.1007/s12613-020-1970-y
      [2]
      A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
      [3]
      Q. Zhou, J.H. Liu, A.X. Wu, and H.J. Wang, Early-age strength property improvement and stability analysis of unclassified tailing paste backfill materials, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1191. doi: 10.1007/s12613-020-1977-4
      [4]
      S. Cao, W.D. Song, and E. Yilmaz, Influence of structural factors on uniaxial compressive strength of cemented tailings backfill, Constr. Build. Mater., 174(2018), p. 190. doi: 10.1016/j.conbuildmat.2018.04.126
      [5]
      D. Deb and S. Jain, Compaction-based analytical stress model for 3D inclined backfilled stopes, Int. J. Geomech., 18(2018), No. 4, art. No. 04018009. doi: 10.1061/(ASCE)GM.1943-5622.0001112
      [6]
      S.H. Yin, Y.Q. Hou, X. Chen, M.Z. Zhang, H.H. Du, and C. Gao, Mechanical behavior, failure pattern and damage evolution of fiber-reinforced cemented sulfur tailings backfill under uniaxial loading, Constr. Build. Mater., 332(2022), art. No. 127248. doi: 10.1016/j.conbuildmat.2022.127248
      [7]
      K.H. Tan, J. Walraven, S. Grünewald, J. Rovers, and B. Cotovanu, Correlations among notched beam tests, double punch tests and round panel tests for a high performance fibre concrete cast at site, Cem. Concr. Compos., 122(2021), art. No. 104138. doi: 10.1016/j.cemconcomp.2021.104138
      [8]
      H. Soleimani-Fard, D. König, and M. Goudarzy, Plane strain shear strength of unsaturated fiber-reinforced fine-grained soils, Acta Geotech., 17(2022), No. 1, p. 105. doi: 10.1007/s11440-021-01197-7
      [9]
      Z.Q. Huang, S. Cao, and E. Yilmaz, Investigation on the flexural strength, failure pattern and microstructural characteristics of combined fibers reinforced cemented tailings backfill, Constr. Build. Mater., 300(2021), art. No. 124005. doi: 10.1016/j.conbuildmat.2021.124005
      [10]
      J.J. Li, S. Cao, E. Yilmaz, and Y.P. Liu, Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 345. doi: 10.1007/s12613-021-2351-x
      [11]
      T. Oh, I. You, N. Banthia, and D.Y. Yoo, Deposition of nanosilica particles on fiber surface for improving interfacial bond and tensile performances of ultra-high-performance fiber-reinforced concrete, Composites Part B, 221(2021), art. No. 109030. doi: 10.1016/j.compositesb.2021.109030
      [12]
      B. Behforouz, V.S. Balkanlou, F. Naseri, E. Kasehchi, E. Mohseni, and T. Ozbakkaloglu, Investigation of eco-friendly fiber-reinforced geopolymer composites incorporating recycled coarse aggregates, Int. J. Environ. Sci. Technol., 17(2020), No. 6, p. 3251. doi: 10.1007/s13762-020-02643-x
      [13]
      C. Yang, P. Yang, W.S. Lv, and Z.K. Wang, Mechanical performance of confined consolidation on the strength development of cemented paste backfill, Geotech. Geol. Eng., 38(2020), No. 2, p. 1097. doi: 10.1007/s10706-019-01074-x
      [14]
      M. Roig-Flores, F. Šimičević, A. Maričić, P. Serna, and M. Horvat, Interfacial transition zone in mature fiber-reinforced concretes, ACI Mater. J., 115(2018), No. 4, p. 623.
      [15]
      H. Baji and C.Q. Li, An analytical solution for hydraulic conductivity of concrete considering properties of the interfacial transition zone (ITZ), Cem. Concr. Compos., 91(2018), p. 1. doi: 10.1016/j.cemconcomp.2018.04.008
      [16]
      L.H. Xu, F.Q. Deng, and Y. Chi, Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber and cement paste, Constr. Build. Mater., 145(2017), p. 619. doi: 10.1016/j.conbuildmat.2017.04.035
      [17]
      Q.N. Wang, G.S. Zhang, Y.Y. Tong, and C.P. Gu, Prediction on permeability of engineered cementitious composites, Crystals, 11(2021), No. 5, art. No. 526. doi: 10.3390/cryst11050526
      [18]
      J. Nemecek, P. Kabele, and Z. Bittnar, Nanoindentation based assessment of micromechanical properties of fiber reinforced cementitious composite, [in] Proceedings of the 6th International RILEM Symposium on Fibre Reinforced Concretes, Varenna, 2004, p. 401.
      [19]
      V. Zacharda, P. Štemberk, and J. Němeček, Nanomechanical performance of interfacial transition zone in fiber reinforced cement matrix, Key Eng. Mater., 760(2018), p. 251. doi: 10.4028/www.scientific.net/KEM.760.251
      [20]
      R.S. Teixeira, G.H.D. Tonoli, S.F. Santos, et al., Nanoindentation study of the interfacial zone between cellulose fiber and cement matrix in extruded composites, Cem. Concr. Compos., 85(2018), p. 1. doi: 10.1016/j.cemconcomp.2017.09.018
      [21]
      L. Li, Z.L. Li, M.L. Cao, Y. Tang, and Z. Zhang, Nanoindentation and porosity fractal dimension of calcium carbonate whisker reinforced cement paste after elevated temperatures (up to 900°c), Fractals, 29(2021), No. 2, art. No. 2140001. doi: 10.1142/S0218348X21400016
      [22]
      J.H. Han, D.C. Huang, J.Y. Chen, and X.F. Lan, Experiment study and finite element analysis of the coupling effect of steel fiber length and coarse aggregate maximum size on the fracture properties of concrete, Crystals, 11(2021), No. 8, art. No. 850. doi: 10.3390/cryst11080850
      [23]
      J.L. Zhang, X. Liu, Y. Yuan, and H.A. Mang, Multiscale modeling of the effect of the interfacial transition zone on the modulus of elasticity of fiber-reinforced fine concrete, Comput. Mech., 55(2015), No. 1, p. 37. doi: 10.1007/s00466-014-1081-6
      [24]
      X. Qian, B. Shen, B. Mu, and Z. Li, Enhancement of aging resistance of glass fiber reinforced cement, Mater. Struct., 36(2003), No. 5, p. 323. doi: 10.1007/BF02480872
      [25]
      Y.C. Wang, L.Z. Wei, J.T. Yu, and K.Q. Yu, Mechanical properties of high ductile magnesium oxychloride cement-based composites after water soaking, Cem. Concr. Compos., 97(2019), p. 248. doi: 10.1016/j.cemconcomp.2018.12.028
      [26]
      T. Zhang, Y. Zhang, H.H. Zhu, and Z.G. Yan, Experimental investigation and multi-level modeling of the effective thermal conductivity of hybrid micro-fiber reinforced cementitious composites at elevated temperatures, Compos. Struct., 256(2021), art. No. 112988. doi: 10.1016/j.compstruct.2020.112988
      [27]
      R.J. Flatt, G.W. Scherer, and J.W. Bullard, Why alite stops hydrating below 80% relative humidity, Cem. Concr. Res., 41(2011), No. 9, p. 987. doi: 10.1016/j.cemconres.2011.06.001
      [28]
      A. Zhou, H.N. Wei, T.J. Liu, D.J. Zou, Y. Li, and R.Y. Qin, Interfacial technology for enhancement in steel fiber reinforced cementitious composite from nano to macroscale, Nanotechnol. Rev., 10(2021), No. 1, p. 636. doi: 10.1515/ntrev-2021-0037
      [29]
      J.S. Cheng, T. Li, X.Q. Liu, and L.H. Zhao, A 3D discrete FEM iterative algorithm for solving the water pipe cooling problems of massive concrete structures, Int. J. Numer. Anal. Methods Geomech., 40(2016), p. 487. doi: 10.1002/nag.2409
      [30]
      J.M. Mayoral and M.P. Romo, Seismic response of bridges with massive foundations, Soil Dyn. Earthq. Eng., 71(2015), p. 88. doi: 10.1016/j.soildyn.2015.01.008
      [31]
      E.O.L. Lantsoght, How do steel fibers improve the shear capacity of reinforced concrete beams without stirrups? Composites Part B, 175(2019), art. No. 107079. doi: 10.1016/j.compositesb.2019.107079
      [32]
      B.R. Ellingwood and Y. Mori, Probabilistic methods for condition assessment and life prediction of concrete structures in nuclear power plants, Nucl. Eng. Des., 142(1993), No. 2-3, p. 155. doi: 10.1016/0029-5493(93)90199-J
      [33]
      A.J. Choobbasti, S.S. Kutanaei, and M. Ghadakpour, Shear behavior of fiber-reinforced sand composite, Arab. J. Geosci., 12(2019), No. 5, p. 1.
      [34]
      S. Abdallah, M.Z. Fan, and D.W.A. Rees, Bonding mechanisms and strength of steel fiber-reinforced cementitious composites: Overview, J. Mater. Civ. Eng., 30(2018), No. 3, art. No. 04018001. doi: 10.1061/(ASCE)MT.1943-5533.0002154
      [35]
      A. Dube, Fiber Reinforced Concrete: Characterization of Flexural Toughness & Some Studies on Fiber-Matrix Bond-Slip Interaction [Dissertation], University of British Columbia, Vancouver, BC, 1999.
      [36]
      A. Dalalbashi, B. Ghiassi, D.V. Oliveira, and A. Freitas, Effect of test setup on the fiber-to-mortar pull-out response in TRM composites: Experimental and analytical modeling, Composites Part B, 143(2018), p. 250. doi: 10.1016/j.compositesb.2018.02.010
      [37]
      T.A. Liu, R.X. Bai, Z.T. Chen, Y.Z. Li, and Y.Z. Yang, Tailoring of polyethylene fiber surface by coating silane coupling agent for strain hardening cementitious composite, Constr. Build. Mater., 278(2021), art. No. 122263. doi: 10.1016/j.conbuildmat.2021.122263
      [38]
      H.Z. Jiao, W.L. Chen, A.X. Wu, et al., Flocculated unclassified tailings settling efficiency improvement by particle collision optimization in the feedwell, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2126. doi: 10.1007/s12613-021-2402-3
      [39]
      A. Perrot and D. Rangeard, Effects of mix design parameters on consolidation behaviour of fresh cement-based materials, Mater. Struct., 50(2017), No. 2, art. No. 117. doi: 10.1617/s11527-016-0988-0
      [40]
      Y.L. Ji, L. Pel, and Z.P. Sun, The microstructure development during bleeding of cement paste: An NMR study, Cem. Concr. Res., 125(2019), art. No. 105866. doi: 10.1016/j.cemconres.2019.105866
      [41]
      L. Cui and M. Fall, Numerical simulation of consolidation behavior of large hydrating fill mass, Int. J. Concr. Struct. Mater., 14(2020), No. 1, p. 23. doi: 10.1186/s40069-020-0398-0
      [42]
      H. Yazıcı, E. Deniz, and B. Baradan, The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete, Constr. Build. Mater., 42(2013), p. 53. doi: 10.1016/j.conbuildmat.2013.01.003
      [43]
      E.A.H. Alwesabi, B.H.A. Bakar, I.M.H. Alshaikh, A.M. Zeyad, A. Altheeb, and H. Alghamdi, Experimental investigation on fracture characteristics of plain and rubberized concrete containing hybrid steel-polypropylene fiber, Structures, 33(2021), p. 4421. doi: 10.1016/j.istruc.2021.07.011
      [44]
      S.F. Lee and S. Jacobsen, Study of interfacial microstructure, fracture energy, compressive energy and debonding load of steel fiber-reinforced mortar, Mater. Struct., 44(2011), No. 8, p. 1451. doi: 10.1617/s11527-011-9710-4
      [45]
      R.B. Jewell, Influence of Calcium Sulfoaluminate Cement on the Pullout Performance of Reinforcing Fibers: An Evaluation of the Micro-mechanical Behavior [Dissertation], University of Kentucky, Lexington, Kentucky, 2015.
      [46]
      Y. Zhang, J.W. Ju, Q. Chen, Z.G. Yan, H.H. Zhu, and Z.W. Jiang, Characterizing and analyzing the residual interfacial behavior of steel fibers embedded into cement-based matrices after exposure to high temperatures, Composites Part B, 191(2020), art. No. 107933. doi: 10.1016/j.compositesb.2020.107933
      [47]
      M. Helmi, M.R. Hall, L.A. Stevens, and S.P. Rigby, Effects of high-pressure/temperature curing on reactive powder concrete microstructure formation, Constr. Build. Mater., 105(2016), p. 554. doi: 10.1016/j.conbuildmat.2015.12.147
      [48]
      G. Ye, P. Lura, and K. van Breugel, Modelling of water permeability in cementitious materials, Mater. Struct., 39(2006), No. 9, p. 877. doi: 10.1617/s11527-006-9138-4
      [49]
      Y. Wang, A.X. Wu, Z.E. Ruan, et al., Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1430. doi: 10.1007/s12613-020-2116-y
      [50]
      A. Ghirian and M. Fall, Strength evolution and deformation behaviour of cemented paste backfill at early ages: Effect of curing stress, filling strategy and drainage, Int. J. Min. Sci. Technol., 26(2016), No. 5, p. 809. doi: 10.1016/j.ijmst.2016.05.039
      [51]
      S. Chakilam and L. Cui, Effect of polypropylene fiber content and fiber length on the saturated hydraulic conductivity of hydrating cemented paste backfill, Constr. Build. Mater., 262(2020), art. No. 120854. doi: 10.1016/j.conbuildmat.2020.120854
      [52]
      L. Festugato, A. Fourie, and N.C. Consoli, Cyclic shear response of fibre-reinforced cemented paste backfill, Geotech. Lett., 3(2013), No. 1, p. 5. doi: 10.1680/geolett.12.00042
      [53]
      H.J. Yim, J.H. Kim, H.G. Kwak, and J.K. Kim, Evaluation of internal bleeding in concrete using a self-weight bleeding test, Cem. Concr. Res., 53(2013), p. 18. doi: 10.1016/j.cemconres.2013.05.015
      [54]
      E.M. Jaouhar and L. Li, Effect of drainage and consolidation on the pore water pressures and total stresses within backfilled stopes and on barricades, Adv. Civ. Eng., 2019(2019), art. No. 1802130.
      [55]
      K.R. Kumar, G. Shyamala, and A. Adesina, Structural performance of corroded reinforced concrete beams made with fiber-reinforced self-compacting concrete, Structures, 32(2021), p. 1145. doi: 10.1016/j.istruc.2021.03.079
      [56]
      N.F. Liu, L.A. Cui, and Y. Wang, Analytical assessment of internal stress in cemented paste backfill, Adv. Mater. Sci. Eng., 2020(2020), art. No. 6666548.
      [57]
      L.A. Cui and M. Fall, Modeling of self-desiccation in a cemented backfill structure, Int. J. Numer. Anal. Methods Geomech., 42(2018), No. 3, p. 558. doi: 10.1002/nag.2756
      [58]
      N. Lu, Generalized soil water retention equation for adsorption and capillarity, J. Geotech. Geoenviron. Eng., 142(2016), No. 10, art. No. 04016051. doi: 10.1061/(ASCE)GT.1943-5606.0001524
      [59]
      P. Simms and M. Grabinsky, Direct measurement of matric suction in triaxial tests on early-age cemented paste backfill, Can. Geotech. J., 46(2009), No. 1, p. 93. doi: 10.1139/T08-098
      [60]
      M.T. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44(1980), No. 5, p. 892. doi: 10.2136/sssaj1980.03615995004400050002x
      [61]
      Y.S. Yao, J.J. Ni, and J. Li, Stress-dependent water retention of granite residual soil and its implications for ground settlement, Comput. Geotech., 129(2021), art. No. 103835. doi: 10.1016/j.compgeo.2020.103835
      [62]
      D.G. Fredlund and A.Q. Xing, Equations for the soil-water characteristic curve, Can. Geotech. J., 31(1994), No. 4, p. 521. doi: 10.1139/t94-061
      [63]
      S.W. Webb, A simple extension of two-phase characteristic curves to include the dry region, Water Resour. Res., 36(2000), No. 6, p. 1425. doi: 10.1029/2000WR900057
      [64]
      P.J. Ross, J. Williams, and K.L. Bristow, Equation for extending water-retention curves to dryness, Soil Sci. Soc. Am. J., 55(1991), No. 4, p. 923. doi: 10.2136/sssaj1991.03615995005500040004x
      [65]
      R.G. Gao, K.P. Zhou, W. Liu, and Q.F. Ren, Correlation between the pore structure and water retention of cemented paste backfill using centrifugal and nuclear magnetic resonance methods, Minerals, 10(2020), No. 7, art. No. 610. doi: 10.3390/min10070610
      [66]
      I.L.S. Libos, L. Cui, and X.R. Liu, Effect of curing temperature on time-dependent shear behavior and properties of polypropylene fiber-reinforced cemented paste backfill, Constr. Build. Mater., 311(2021), art. No. 125302. doi: 10.1016/j.conbuildmat.2021.125302
      [67]
      I.L.S. Libos and L. Cui, Effects of curing time, cement content, and saturation state on mode-I fracture toughness of cemented paste backfill, Eng. Fract. Mech., 235(2020), art. No. 107174. doi: 10.1016/j.engfracmech.2020.107174
      [68]
      L.C. Jiang, C. Yang, and H.Z. Jiao, Ultimately exposed roof area prediction of bauxite deposit goaf based on macro joint damage, Int. J. Min. Sci. Technol., 30(2020), No. 5, p. 699. doi: 10.1016/j.ijmst.2020.06.005
      [69]
      S. Shiozawa and G.S. Campbell, Soil thermal conductivity, Remote Sens. Rev., 5(1990), No. 1, p. 301. doi: 10.1080/02757259009532137
      [70]
      A.G. Leach, The thermal conductivity of foams. I. Models for heat conduction, J. Phys. D: Appl. Phys., 26(1993), No. 5, p. 733. doi: 10.1088/0022-3727/26/5/003
      [71]
      A.S. Judge, The Thermal Regime of the Mackenzie Valley: Observations of the Natural State, Environmental-Social Committee, Northern Pipelines, Task Force on Northern Oil Development, Ottawa, 1973.
      [72]
      W. Woodside and J.H. Messmer, Thermal conductivity of porous media. I. Unconsolidated sands, J. Appl. Phys., 32(1961), No. 9, p. 1688. doi: 10.1063/1.1728419
      [73]
      V.R. Tarnawski and W.H. Leong, Advanced geometric mean model for predicting thermal conductivity of unsaturated soils, Int. J. Thermophys., 37(2016), No. 2, art. No. 18. doi: 10.1007/s10765-015-2024-y
      [74]
      S. Lu, T.S. Ren, Y.S. Gong, and R. Horton, An improved model for predicting soil thermal conductivity from water content at room temperature, Soil Sci. Soc. Am. J., 71(2007), No. 1, p. 8. doi: 10.2136/sssaj2006.0041
      [75]
      S.X. Chen, Thermal conductivity of sands, Heat Mass Transfer, 44(2008), No. 10, p. 1241. doi: 10.1007/s00231-007-0357-1
      [76]
      Y.L. Lu, S. Lu, R. Horton, and T.S. Ren, An empirical model for estimating soil thermal conductivity from texture, water content, and bulk density, Soil Sci. Soc. Am. J., 78(2014), No. 6, p. 1859. doi: 10.2136/sssaj2014.05.0218
      [77]
      A. Alrtimi, M. Rouainia, and S. Haigh, Thermal conductivity of a sandy soil, Appl. Therm. Eng., 106(2016), p. 551. doi: 10.1016/j.applthermaleng.2016.06.012
      [78]
      S. He, Z. Li and E. H. Yang, Quantitative characterization of anisotropic properties of the interfacial transition zone (ITZ) between microfiber and cement paste, Cem. Concr. Res., 122(2019), p. 136. doi: 10.1016/j.cemconres.2019.05.007
      [79]
      D. Belkharchouche and A. Chaker, Effects of moisture on thermal conductivity of the lightened construction material, Int. J. Hydrogen Energy, 41(2016), No. 17, p. 7119. doi: 10.1016/j.ijhydene.2016.01.160
      [80]
      W.J. Likos, Pore-scale model for thermal conductivity of unsaturated sand, Geotech. Geol. Eng., 33(2015), No. 2, p. 179. doi: 10.1007/s10706-014-9744-9
      [81]
      Q. Zhou and J.J. Beaudoin, Effect of applied hydrostatic stress on the hydration of Portland cement and C3S, Adv. Cem. Res., 15(2003), No. 1, p. 9. doi: 10.1680/adcr.2003.15.1.9
      [82]
      A.M. Neville, Creep of Concrete: Plain, Reinforced, and Prestressed, Elsevier, Amsterdam, 1971.
      [83]
      G. Goracci, M. Monasterio, H. Jansson, and S. Cerveny, Dynamics of nano-confined water in Portland cement - comparison with synthetic C–S–H gel and other silicate materials, Sci. Rep., 7(2017), art. No. 8258. doi: 10.1038/s41598-017-08645-z
      [84]
      T. Honorio, F. Masara, and F. Benboudjema, Heat capacity, isothermal compressibility, isosteric heat of adsorption and thermal expansion of water confined in C–S–H, Cement, 6(2021), art. No. 100015. doi: 10.1016/j.cement.2021.100015
      [85]
      S.H. Garofalini, T.S. Mahadevan, S.Y. Xu, and G.W. Scherer, Molecular mechanisms causing anomalously high thermal expansion of nanoconfined water, ChemPhysChem, 9(2008), No. 14, p. 1997. doi: 10.1002/cphc.200800455
      [86]
      S. Mindess, J.F. Young, and D. Darwin, Concrete, 2nd ed., Prentice Hall, Upper Saddle River, 2003.
      [87]
      N. Zhang, X.B. Yu, A. Pradhan, and A.J. Puppala, Thermal conductivity of quartz sands by thermo-time domain reflectometry probe and model prediction, J. Mater. Civ. Eng., 27(2015), No. 12, art. No. 04015059. doi: 10.1061/(ASCE)MT.1943-5533.0001332
      [88]
      K.O. Sakyi-Bekoe, Assessment of the Coefficient of Thermal Expansion of Alabama Concrete [Dissertation], Auburn University, Auburn, Alabama, 2008.
      [89]
      N.I. Kömle, E.S. Hütter, and W.J. Feng, Thermal conductivity measurements of coarse-grained gravel materials using a hollow cylindrical sensor, Acta Geotech., 5(2010), No. 4, p. 211. doi: 10.1007/s11440-010-0126-z
      [90]
      A.M. Neville and J.J. Brooks, Concrete Technology, Longman Scientific & Technical, Essex, 1991.
      [91]
      M.A. Kant, J. Ammann, E. Rossi, C. Madonna, D. Höser, and P. Rudolf von Rohr, Thermal properties of Central Aare granite for temperatures up to 500°C: Irreversible changes due to thermal crack formation, Geophys. Res. Lett., 44(2017), No. 2, p. 771. doi: 10.1002/2016GL070990
      [92]
      P.K. Mehta and P.J.M. Monteiro, Concrete: Microstructure, Properties, and Materials, 4th ed., McGraw Hill, New York, 2013, p. 114.
      [93]
      A.P.S. Selvadurai and S.M. Rezaei Niya, Effective thermal conductivity of an intact heterogeneous limestone, J. Rock Mech. Geotech. Eng., 12(2020), No. 4, p. 682. doi: 10.1016/j.jrmge.2020.04.001
      [94]
      O.A. Balogun, A.A. Akinwande, A.A. Adediran, P.P. Ikubanni, S.A. Shittu, and O.S. Adesina, Experimental study on the properties of fired sand–clay ceramic products for masonry applications, J. Mater. Civ. Eng., 33(2021), No. 2, art. No. 04020445. doi: 10.1061/(ASCE)MT.1943-5533.0003532
      [95]
      E.J. Sellevold and Ø. Bjøntegaard, Coefficient of thermal expansion of cement paste and concrete: Mechanisms of moisture interaction, Mater. Struct., 39(2006), No. 9, p. 809. doi: 10.1617/s11527-006-9086-z
      [96]
      Y.B. Du and Y. Ge, Multiphase model for predicting the thermal conductivity of cement paste and its applications, Materials, 14(2021), No. 16, art. No. 4525. doi: 10.3390/ma14164525
      [97]
      M.J.A. Qomi, F.J. Ulm, and R.J.M. Pellenq, Physical origins of thermal properties of cement paste, Phys. Rev. Appl., 3(2015), No. 6, art. No. 064010. doi: 10.1103/PhysRevApplied.3.064010
      [98]
      S. Ghabezloo, Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste, Cem. Concr. Res., 41(2011), No. 5, p. 520. doi: 10.1016/j.cemconres.2011.01.023
      [99]
      H. Xu, Y. Zhao, S.C. Vogel, L.L. Daemen, and D.D. Hickmott, Anisotropic thermal expansion and hydrogen bonding behavior of portlandite: A high-temperature neutron diffraction study, J. Solid State Chem., 180(2007), No. 4, p. 1519. doi: 10.1016/j.jssc.2007.03.004
      [100]
      K.J. Krakowiak, R.G. Nannapaneni, A. Moshiri, et al., Engineering of high specific strength and low thermal conductivity cementitious composites with hollow glass microspheres for high-temperature high-pressure applications, Cem. Concr. Compos., 108(2020), art. No. 103514. doi: 10.1016/j.cemconcomp.2020.103514
      [101]
      D. Tripathi, Practical Guide to Polypropylene, RAPRA Technology LTD., Shrewsbury, Shropshire, 2002.
      [102]
      J.E. Mark, Polymer Data Handbook, 2nd ed., Oxford University Press, New York, 2009.
      [103]
      T. Kashiwagi, E. Grulke, J. Hilding, et al., Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites, Polymer, 45(2004), No. 12, p. 4227. doi: 10.1016/j.polymer.2004.03.088
      [104]
      J. Stolz, Y. Boluk, and V. Bindiganavile, Mechanical, thermal and acoustic properties of cellular alkali activated fly ash concrete, Cem. Concr. Compos., 94(2018), p. 24. doi: 10.1016/j.cemconcomp.2018.08.004
      [105]
      Y.H. Wang, Study on High Temperature Behaviours of FRHPC Pipe Members [Dissertation], Dalian University of Technology, Dalian, 2008.
      [106]
      Y. Zhang, J.W. Ju, H.H. Zhu, Q.H. Guo, and Z.G. Yan, Micromechanics based multi-level model for predicting the coefficients of thermal expansion of hybrid fiber reinforced concrete, Constr. Build. Mater., 190(2018), p. 948. doi: 10.1016/j.conbuildmat.2018.09.030
      [107]
      H.G. Noh, H.C. Kang, M.H. Kim, and H.S. Park, Estimation model for effective thermal conductivity of reinforced concrete containing multiple round rebars, Int. J. Concr. Struct. Mater., 12(2018), No. 1, art. No. 65. doi: 10.1186/s40069-018-0291-2
      [108]
      T. Hassan, H. Jamshaid, R. Mishra, et al., Acoustic, mechanical and thermal properties of green composites reinforced with natural fibers waste, Polymers, 12(2020), No. 3, art. No. 654. doi: 10.3390/polym12030654
      [109]
      R. Stapulionienė, S. Vaitkus, S. Vėjelis, and A. Sankauskaitė, Investigation of thermal conductivity of natural fibres processed by different mechanical methods, Int. J. Precis. Eng. Manuf., 17(2016), No. 10, p. 1371. doi: 10.1007/s12541-016-0163-0
      [110]
      J.J. Valenza and G.W. Scherer, Evidence of anomalous thermal expansion of water in cement paste, Cem. Concr. Res., 35(2005), No. 1, p. 57. doi: 10.1016/j.cemconres.2004.08.022
      [111]
      Z.X. Zhao, C.Z. Sun, and R.F. Zhou, Thermal conductivity of confined-water in graphene nanochannels, Int. J. Heat Mass Transfer, 152(2020), art. No. 119502. doi: 10.1016/j.ijheatmasstransfer.2020.119502
      [112]
      X.R. Wang, H. Shao, J. Hesser, C.L. Zhang, W.Q. Wang, and O. Kolditz, Numerical analysis of thermal impact on hydro-mechanical properties of clay, J. Rock Mech. Geotech. Eng., 6(2014), No. 5, p. 405. doi: 10.1016/j.jrmge.2014.07.002
      [113]
      X.Y. Pang and C. Meyer, Modeling cement hydration by connecting a nucleation and growth mechanism with a diffusion mechanism. Part II: Portland cement paste hydration, Sci. Eng. Compos. Mater., 23(2016), No. 6, p. 605. doi: 10.1515/secm-2013-0259
      [114]
      R. Snellings, A. Machner, G. Bolte, et al., Hydration kinetics of ternary slag-limestone cements: Impact of water to binder ratio and curing temperature, Cem. Concr. Res., 151(2022), art. No. 106647. doi: 10.1016/j.cemconres.2021.106647
      [115]
      D.P. Bentz, Three-dimensional computer simulation of Portland cement hydration and microstructure development, J. Am. Ceram. Soc., 80(1997), No. 1, p. 3. doi: 10.1111/j.1151-2916.1997.tb02785.x
      [116]
      J.W. Bullard, A three-dimensional microstructural model of reactions and transport in aqueous mineral systems, Modell. Simul. Mater. Sci. Eng., 15(2007), No. 7, p. 711. doi: 10.1088/0965-0393/15/7/002
      [117]
      K. van Breugel, Simulation of Hydration and Formation of Structure in Hardening Cement-based Materials [Dissertation], Delft University of Technology, Delft, 1991.
      [118]
      H.M. Jennings and S.K. Johnson, Simulation of microstructure development during the hydration of a cement compound, J. Am. Ceram. Soc., 69(1986), No. 11, p. 790. doi: 10.1111/j.1151-2916.1986.tb07361.x
      [119]
      A. K. Schindler and K. J. Folliard, Heat of hydration models for cementitious materials, ACI Mater. J., 102(2005), No. 1, p. 24.
      [120]
      H. Nakamura, S. Hamada, T. Tanimoto and A. Miyamoto, Estimation of thermal crack resistance for mass concrete structures with uncertain material properties, ACI Struct. J., 96(1999), No. 4, p. 509.
      [121]
      M. Cervera, R. Faria, J. Oliver, and T. Prato, Numerical modelling of concrete curing, regarding hydration and temperature phenomena, Comput. Struct., 80(2002), No. 18-19, p. 1511. doi: 10.1016/S0045-7949(02)00104-9
      [122]
      T. Knudsen, Modeling hydration of Portland cement-the effect of particle size distribution, [in] Proceedings of the Engineering Foundation Conference on Characterization and Performance Prediction of Cement and Concrete, New Hampshire, 1982, p. 125.
      [123]
      D.P. Bentz, Influence of water-to-cement ratio on hydration kinetics: Simple models based on spatial considerations, Cem. Concr. Res., 36(2006), No. 2, p. 238. doi: 10.1016/j.cemconres.2005.04.014
      [124]
      X. Pang, C. Meyer, R. Darbe and G. P. Funkhouser, Modeling the effect of curing temperature and pressure on cement hydration kinetics, ACI Mater. J., 110(2013), No. 2, p. 137.
      [125]
      L.J. Sun, X.Y. Pang, Y.H. Bu, and C.W. Wang, Experimental study of the effect of curing temperature and pressure on the property evolution of oil well cement, [in] Proceedings of the 55th U.S. Rock Mechanics/Geomechanics Symposium, Virtual Conference, 2021, p. 1397.
      [126]
      G.W. Scherer, G.P. Funkhouser, and S. Peethamparan, Effect of pressure on early hydration of class H and white cement, Cem. Concr. Res., 40(2010), No. 6, p. 845. doi: 10.1016/j.cemconres.2010.01.013
      [127]
      G. Quercia, H.J.H. Brouwers, A. Garnier, and K. Luke, Influence of olivine nano-silica on hydration and performance of oil-well cement slurries, Mater. Des., 96(2016), p. 162. doi: 10.1016/j.matdes.2016.02.001
      [128]
      Q.S. Chen, S.Y. Sun, Y.K. Liu, C.C. Qi, H.B. Zhou, and Q.L. Zhang, Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440. doi: 10.1007/s12613-021-2274-6
      [129]
      D. Fan and S.T. Yang, Mechanical properties of C–S–H globules and interfaces by molecular dynamics simulation, Constr. Build. Mater., 176(2018), p. 573. doi: 10.1016/j.conbuildmat.2018.05.085
      [130]
      V. Baroghel-Bouny, P. Mounanga, A. Khelidj, A. Loukili, and N. Rafaï, Autogenous deformations of cement pastes: Part II. W/C effects, micro–macro correlations, and threshold values, Cem. Concr. Res., 36(2006), No. 1, p. 123. doi: 10.1016/j.cemconres.2004.10.020
      [131]
      M. Szeląg, Development of cracking patterns in modified cement matrix with microsilica, Materials, 11(2018), No. 10, art. No. 1928. doi: 10.3390/ma11101928
      [132]
      C.C. Qi, X.H. Xu, and Q.S. Chen, Hydration reactivity difference between dicalcium silicate and tricalcium silicate revealed from structural and Bader charge analysis, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 335. doi: 10.1007/s12613-021-2364-5
      [133]
      P.D. Tennis and H.M. Jennings, A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes, Cem. Concr. Res., 30(2000), No. 6, p. 855. doi: 10.1016/S0008-8846(00)00257-X
      [134]
      M. Vandamme, F.J. Ulm, and P. Fonollosa, Nanogranular packing of C–S–H at substochiometric conditions, Cem. Concr. Res., 40(2010), No. 1, p. 14. doi: 10.1016/j.cemconres.2009.09.017
      [135]
      A. Nonat, The structure and stoichiometry of C–S–H, Cem. Concr. Res., 34(2004), No. 9, p. 1521. doi: 10.1016/j.cemconres.2004.04.035
      [136]
      H.M. Jennings, J.J. Thomas, J.S. Gevrenov, G. Constantinides, and F.J. Ulm, A multi-technique investigation of the nanoporosity of cement paste, Cem. Concr. Res., 37(2007), No. 3, p. 329. doi: 10.1016/j.cemconres.2006.03.021
      [137]
      I.G. Richardson, Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C–S–H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume, Cem. Concr. Res., 34(2004), No. 9, p. 1733. doi: 10.1016/j.cemconres.2004.05.034
      [138]
      I.G. Richardson, The nature of the hydration products in hardened cement pastes, Cem. Concr. Compos., 22(2000), No. 2, p. 97. doi: 10.1016/S0958-9465(99)00036-0
      [139]
      G. Constantinides and F.J. Ulm, The nanogranular nature of C–S–H, J. Mech. Phys. Solids, 55(2007), No. 1, p. 64. doi: 10.1016/j.jmps.2006.06.003
      [140]
      P. Mondal, S.P. Shah, L.D. Marks, and J.J. Gaitero, Comparative study of the effects of microsilica and nanosilica in concrete, Transp. Res. Rec., 2141(2010), No. 1, p. 6. doi: 10.3141/2141-02
      [141]
      J.J. Kim, M.K. Rahman, and M.M.R. Taha, Examining microstructural composition of hardened cement paste cured under high temperature and pressure using nanoindentation and 29Si MAS NMR, Appl. Nanosci., 2(2012), No. 4, p. 445. doi: 10.1007/s13204-012-0058-z
      [142]
      S. Yashiro, Application of particle simulation methods to composite materials: A review, Adv. Compos. Mater., 26(2017), No. 1, p. 1. doi: 10.1080/09243046.2016.1222508
      [143]
      A. Ferrari, J. Jimenez-Martinez, T.L. Borgne, Y. Méheust, and I. Lunati, Challenges in modeling unstable two-phase flow experiments in porous micromodels, Water Resour. Res., 51(2015), No. 3, p. 1381. doi: 10.1002/2014WR016384
      [144]
      X. Sun, X. Zhang, X. Jiao, J. Ma, X.Z. Liu, H. Yang, et al., Injectable bioactive polymethyl methacrylate–hydrogel hybrid bone cement loaded with BMP-2 to improve osteogenesis for percutaneous vertebroplasty and kyphoplasty, Bio-Des. Manuf., 5(2022), No. 2, p. 318. doi: 10.1007/s42242-021-00172-1
      [145]
      L.D. Carlos and F. Palacio, Thermometry at the Nanoscale: Techniques and Selected Applications, Royal Society of Chemistry, London, 2015.
      [146]
      M. Voltolini, M.C. Dalconi, G. Artioli, et al., Understanding cement hydration at the microscale: New opportunities from 'pencil-beam' synchrotron X-ray diffraction tomography, J. Appl. Cryst., 46(2013), No. 1, p. 142. doi: 10.1107/S0021889812046985
      [147]
      M. Sun, G.Q. Geng, D.B. Xin, and C.Y. Zou, Molecular quantification of the decelerated dissolution of tri-calcium silicate (C3S) due to surface adsorption, Cem. Concr. Res., 152(2022), art. No. 106682. doi: 10.1016/j.cemconres.2021.106682
      [148]
      A.J.N. MacLeod, F.G. Collins, and W.H. Duan, Effects of carbon nanotubes on the early-age hydration kinetics of Portland cement using isothermal calorimetry, Cem. Concr. Compos., 119(2021), art. No. 103994. doi: 10.1016/j.cemconcomp.2021.103994
      [149]
      J.H. Song and T. Belytschko, Multiscale aggregating discontinuities method for micro–macro failure of composites, Composites Part B, 40(2009), No. 6, p. 417. doi: 10.1016/j.compositesb.2009.01.007

    Catalog


    • /

      返回文章
      返回