留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(10)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1142
  • HTML全文浏览量:  424
  • PDF下载量:  136
  • 被引次数: 0
Na Xiao, Xu Guan, Dong Wang, Haile Yan, Minghui Cai, Nan Jia, Yudong Zhang, Claude Esling, Xiang Zhao,  and Liang Zuo, Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1667-1679. https://doi.org/10.1007/s12613-023-2641-6
Cite this article as:
Na Xiao, Xu Guan, Dong Wang, Haile Yan, Minghui Cai, Nan Jia, Yudong Zhang, Claude Esling, Xiang Zhao,  and Liang Zuo, Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1667-1679. https://doi.org/10.1007/s12613-023-2641-6
引用本文 PDF XML SpringerLink
特约综述

W合金化对面心立方高熵合金组织、力学性能和耐蚀性的影响:综述


  • 通讯作者:

    闫海乐    E-mail: yanhaile@mail.neu.edu.cn

    贾楠    E-mail: jian@mail.neu.edu.cn

文章亮点

  • (1) 从晶格畸变、第二相析出与细晶强化三个方面综述了W掺杂对面心立方高熵合金微观组织与力学性能的影响。
  • (2) 概述了W掺杂对面心立方高熵合金耐腐蚀性能的影响并探讨了其作用机制。
  • (3) 总结了高熵合金W合金化研究存在的问题并探讨了可能的解决方法。
  • 多主元高/中熵合金是由多种主要组成元素构成的固溶体合金。与传统合金相比,高熵合金因其具有高强度、高硬度、高耐磨性、高温稳定性、抗高温氧化性以及抗辐照性等优点,成为近些年来金属材料科学领域的研究热点。研究表明,W元素掺杂可激活多种强化机制,包括固溶强化、细晶强化和第二相强化(μ相、σ相和b.c.c.相),并且能够促使合金表面形成致密的WO3钝化膜进而改善其抗腐蚀性能。W元素合金化的上述作用使得其引起了高熵合金领域研究者的广泛关注。本文从组织结构、力学性能及抗腐蚀性能三个方面综述了掺杂W元素对多主元高/中熵合金的影响,并对其存在的问题及可能解决途径进行了探讨和分析。
  • Invited Review

    Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review

    + Author Affiliations
    • Face-centered cubic (f.c.c.) high entropy alloys (HEAs) are attracting more and more attention owing to their excellent strength and ductility synergy, irradiation resistance, etc. However, the yield strength of f.c.c. HEAs is generally low, significantly limiting their practical applications. Recently, the alloying of W has been evidenced to be able to remarkably improve the mechanical properties of f.c.c. HEAs and is becoming a hot topic in the community of HEAs. To date, when W is introduced, multiple strengthening mechanisms, including solid-solution strengthening, precipitation strengthening (μ phase, σ phase, and b.c.c. phase), and grain-refinement strengthening, have been discovered to be activated or enhanced. Apart from mechanical properties, the addition of W improves corrosion resistance as W helps to form a dense WO3 film on the alloy surface. Until now, despite the extensive studies in the literature, there is no available review paper focusing on the W doping of the f.c.c. HEAs. In that context, the effects of W doping on f.c.c. HEAs were reviewed in this work from three aspects, i.e., microstructure, mechanical property, and corrosion resistance. We expect this work can advance the application of the W alloying strategy in the f.c.c. HEAs.
    • loading
    • [1]
      P.J. Shi, R.G. Li, Y. Li, et al., Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science, 373(2021), No. 6557, p. 912. doi: 10.1126/science.abf6986
      [2]
      Y.P. Lu, Y. Dong, H. Jiang, et al., Promising properties and future trend of eutectic high entropy alloys, Scripta Mater., 187(2020), p. 202. doi: 10.1016/j.scriptamat.2020.06.022
      [3]
      Z.F. Lei, X.J. Liu, Y. Wu, et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563(2018), No. 7732, p. 546. doi: 10.1038/s41586-018-0685-y
      [4]
      H.L. Yan, L.D. Wang, H.X. Liu, et al., Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni–Mn–Ti alloy: Experimental and ab-initio studies, Mater. Des., 184(2019), art. No. 108180. doi: 10.1016/j.matdes.2019.108180
      [5]
      J.H. Zhou, Y.F. Shen, and N. Jia, Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 335. doi: 10.1007/s12613-020-2121-1
      [6]
      H.L. Yan, X.M. Huang, and C. Esling, Recent progress in crystallographic characterization, magnetoresponsive and elastocaloric effects of Ni–Mn–In-based heusler alloys—A review, Front. Mater., 9(2022), art. No. 812984. doi: 10.3389/fmats.2022.812984
      [7]
      H.X. Liu, H.L. Yan, N. Jia, et al., Machine-learning-assisted discovery of empirical rule for inherent brittleness of full Heusler alloys, J. Mater. Sci. Technol., 131(2022), p. 1. doi: 10.1016/j.jmst.2022.05.017
      [8]
      J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
      [9]
      B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
      [10]
      Y. Wei, Y. Fu, Z.M. Pan, et al., Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 915. doi: 10.1007/s12613-021-2257-7
      [11]
      Z. Shojaei, G.R. Khayati, and E. Darezereshki, Review of electrodeposition methods for the preparation of high-entropy alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1683. doi: 10.1007/s12613-022-2439-y
      [12]
      Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, and H.H. Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 389. doi: 10.1007/s12613-021-2373-4
      [13]
      Y. Zhang, T.T. Zuo, Z. Tang, et al., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1. doi: 10.1016/j.pmatsci.2013.10.001
      [14]
      P.J. Shi, W.L. Ren, T.X. Zheng, et al., Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nat. Commun., 10(2019), art. No. 489. doi: 10.1038/s41467-019-08460-2
      [15]
      T. Nagase, S. Anada, P.D. Rack, et al., Electron-irradiation-induced structural change in Zr–Hf–Nb alloy, Intermetallics, 26(2012), p. 122. doi: 10.1016/j.intermet.2012.02.015
      [16]
      O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698. doi: 10.1016/j.intermet.2011.01.004
      [17]
      B. Cantor, Multicomponent high-entropy Cantor alloys, Prog. Mater. Sci., 120(2021), art. No. 100754. doi: 10.1016/j.pmatsci.2020.100754
      [18]
      Z.W. Wang, W.J. Lu, F.C. An, et al., High stress twinning in a compositionally complex steel of very high stacking fault energy, Nat. Commun., 13(2022), No. 1, art. No. 3598. doi: 10.1038/s41467-022-31315-2
      [19]
      M.Y. He, N. Jia, X.C. Liu, Y.F. Shen, and L. Zuo, Abnormal chemical composition fluctuations in multi-principal-element alloys induced by simple cyclic deformation, J. Mater. Sci. Technol., 113(2022), p. 287. doi: 10.1016/j.jmst.2021.08.075
      [20]
      J.Y. He, H. Wang, H.L. Huang, et al., A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., 102(2016), p. 187. doi: 10.1016/j.actamat.2015.08.076
      [21]
      N.H. Tariq, M. Naeem, B.A. Hasan, J.I. Akhter, and M. Siddique, Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy, J. Alloys Compd., 556(2013), p. 79. doi: 10.1016/j.jallcom.2012.12.095
      [22]
      Y. Dong and Y.P. Lu, Effects of tungsten addition on the microstructure and mechanical properties of near-eutectic AlCoCrFeNi2 high-entropy alloy, J. Mater. Eng. Perform., 27(2018), No. 1, p. 109. doi: 10.1007/s11665-017-3096-6
      [23]
      N. Malatji, T. Lengopeng, S. Pityana, and A.P.I. Popoola, Microstructural, mechanical and electrochemical properties of AlCrFeCuNiWx high entropy alloys, J. Mater. Res. Technol., 11(2021), p. 1594. doi: 10.1016/j.jmrt.2021.01.103
      [24]
      D. Kumar, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Materials-structure-property correlation study of spark plasma sintered AlCuCrFeMnWx (x = 0, 0.05, 0.1, 0.5) high-entropy alloys, J. Mater. Res., 34(2019), No. 5, p. 767. doi: 10.1557/jmr.2019.18
      [25]
      S.L. Wei and C.C. Tasan, Deformation faulting in a metastable CoCrNiW complex concentrated alloy: A case of negative intrinsic stacking fault energy? Acta Mater., 200(2020), p. 992. doi: 10.1016/j.actamat.2020.09.056
      [26]
      R.B. Chang, W. Fang, X. Bai, et al., Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys, J. Alloys Compd., 790(2019), p. 732. doi: 10.1016/j.jallcom.2019.03.235
      [27]
      Z.G. Wu, W. Guo, K. Jin, J.D. Poplawsky, Y.F. Gao, and H.B. Bei, Enhanced strength and ductility of a tungsten-doped CoCrNi medium-entropy alloy, J. Mater. Res., 33(2018), No. 19, p. 3301. doi: 10.1557/jmr.2018.247
      [28]
      Y.J. Chen, Y. Fang, X.Q. Fu, et al., Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy, J. Mater. Sci. Technol., 73(2021), p. 101. doi: 10.1016/j.jmst.2020.08.058
      [29]
      L. Zhang, X.F. Huo, A.G. Wang, et al., A ductile high entropy alloy strengthened by nano sigma phase, Intermetallics, 122(2020), art. No. 106813. doi: 10.1016/j.intermet.2020.106813
      [30]
      L. Zhang, L. Zhang, H. Wang, et al., Evolution of the microstructure and mechanical properties of an sigma-hardened high-entropy alloy at different annealing temperatures, Mater. Sci. Eng. A, 831(2022), art. No. 142140. doi: 10.1016/j.msea.2021.142140
      [31]
      H. Ma, Y. Shao, and C.H. Shek, CoCuFeNi high entropy alloy reinforced by in situ W particles, Mater. Sci. Eng. A, 797(2020), art. No. 140218. doi: 10.1016/j.msea.2020.140218
      [32]
      H. Jiang, L. Jiang, K.M. Han, et al., Effects of tungsten on microstructure and mechanical properties of CrFeNiV0.5Wx and CrFeNi2V0.5Wx high-entropy alloys, J. Mater. Eng. Perform., 24(2015), No. 12, p. 4594. doi: 10.1007/s11665-015-1767-8
      [33]
      Z.Z. Niu, J. Xu, T. Wang, N.R. Wang, Z.H. Han, and Y. Wang, Microstructure, mechanical properties and corrosion resistance of CoCrFeNiWx (x = 0, 0.2, 0.5) high entropy alloys, Intermetallics, 112(2019), art. No. 106550. doi: 10.1016/j.intermet.2019.106550
      [34]
      M.G. Poletti, G. Fiore, F. Gili, D. Mangherini, and L. Battezzati, Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3 + 5 at.% of C, Mater. Des., 115(2017), p. 247. doi: 10.1016/j.matdes.2016.11.027
      [35]
      M.H. Tsai, A.C. Fan, and H.G. Wang, Effect of atomic size difference on the type of major intermetallic phase in arc-melted CoCrFeNiX high-entropy alloys, J. Alloys Compd., 695(2017), p. 1479. doi: 10.1016/j.jallcom.2016.10.286
      [36]
      L. Wang, L. Wang, Y.C. Tang, et al., Microstructure and mechanical properties of CoCrFeNiWx high entropy alloys reinforced by μ phase particles, J. Alloys Compd., 843(2020), art. No. 155997. doi: 10.1016/j.jallcom.2020.155997
      [37]
      A.C. Fan, J.H. Li, and M.H. Tsai, On the phase constituents of three CoCrFeNiX (X = Cr, Mo, W) high-entropy alloys after prolonged annealing, Mater. Chem. Phys., 276(2022), art. No. 125431. doi: 10.1016/j.matchemphys.2021.125431
      [38]
      V.K. Soni, S. Sanyal, and S.K. Sinha, Influence of tungsten on microstructure evolution and mechanical properties of selected novel FeCoCrMnWx high entropy alloys, Intermetallics, 132(2021), art. No. 107161. doi: 10.1016/j.intermet.2021.107161
      [39]
      J.J. Yang, C.J. Liang, C.L. Wang, et al., Improving mechanical properties of (Co1.5FeNi)88.5Ti6Al4R1.5 (R = Hf, W, Nb, Ta, Mo, V) multi-component high-entropy alloys via multi-stage strain hardening strengthening, Mater. Des., 222(2022), art. No. 111061. doi: 10.1016/j.matdes.2022.111061
      [40]
      W.H. Liu, Z.P. Lu, J.Y. He, et al., Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases, Acta Mater., 116(2016), p. 332. doi: 10.1016/j.actamat.2016.06.063
      [41]
      J.W. Miao, T.M. Guo, J.F. Ren, A.J. Zhang, B. Su, and J.H. Meng, Optimization of mechanical and tribological properties of FCC CrCoNi multi-principal element alloy with Mo addition, Vacuum, 149(2018), p. 324. doi: 10.1016/j.vacuum.2018.01.012
      [42]
      R. Fan, L.P. Wang, L.L. Zhao, et al., Synergistic effect of Nb and Mo alloying on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, Mater. Sci. Eng. A, 829(2022), art. No. 142153. doi: 10.1016/j.msea.2021.142153
      [43]
      W.J. Lu, X.A. Luo, Y.Q. Yang, and B. Huang, Effects of Nb additions on structure and mechanical properties evolution of CoCrNi medium-entropy alloy, Mater. Express, 9(2019), No. 4, p. 291. doi: 10.1166/mex.2019.1506
      [44]
      U. Sunkari, S.R. Reddy, B.D.S. Rathod, et al., Heterogeneous precipitation mediated heterogeneous nanostructure enhances strength-ductility synergy in severely cryo-rolled and annealed CoCrFeNi2.1Nb0.2 high entropy alloy, Sci. Rep., 10(2020), No. 1, art. No. 6056. doi: 10.1038/s41598-020-63038-z
      [45]
      H. Jiang, L. Li, Z.L. Ni, D.X. Qiao, Q. Zhang, and H.M. Sui, Effect of Nb on microstructure and properties of AlCoCrFeNi2.1 high entropy alloy, Mater. Chem. Phys., 290(2022), art. No. 126631. doi: 10.1016/j.matchemphys.2022.126631
      [46]
      S. Huang, W. Li, O. Eriksson, and L. Vitos, Chemical ordering controlled thermo-elasticity of AlTiVCr1−xNbx high-entropy alloys, Acta Mater., 199(2020), p. 53. doi: 10.1016/j.actamat.2020.08.005
      [47]
      Y. Du, X.H. Pei, Z.W. Tang, et al., Mechanical and tribological performance of CoCrNiHfx eutectic medium-entropy alloys, J. Mater. Sci. Technol., 90(2021), p. 194. doi: 10.1016/j.jmst.2021.03.023
      [48]
      F. Maresca and W.A. Curtin, Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K, Acta Mater., 182(2020), p. 235. doi: 10.1016/j.actamat.2019.10.015
      [49]
      W.N. Jiao, J.W. Miao, Y.P. Lu, et al., Designing CoCrFeNi–M (M = Nb, Ta, Zr, and Hf) eutectic high-entropy alloys via a modified simple mixture method, J. Alloys Compd., 941(2023), art. No. 168975. doi: 10.1016/j.jallcom.2023.168975
      [50]
      C. Ai, F. He, M. Guo, et al., Alloy design, micromechanical and macromechanical properties of CoCrFeNiTax eutectic high entropy alloys, J. Alloys Compd., 735(2018), p. 2653. doi: 10.1016/j.jallcom.2017.12.015
      [51]
      C. Ai, G.X. Wang, L. Liu, et al., Effect of Ta addition on solidification characteristics of CoCrFeNiTax eutectic high entropy alloys, Intermetallics, 120(2020), art. No. 106769. doi: 10.1016/j.intermet.2020.106769
      [52]
      B. Chanda, S.K. Pani, and J. Das, Mechanism of microstructure evolution and spheroidization in ultrafine lamellar CoCrFeNi(Nb0·5/Ta0.4) eutectic high entropy alloys upon hot deformation, Mater. Sci. Eng. A, 835(2022), art. No. 142669. doi: 10.1016/j.msea.2022.142669
      [53]
      Y. Yang, X.Y. Luo, T.X. Ma, L.Y. Wen, L.W. Hu, and M.L. Hu, Effect of Al on characterization and properties of AlxCoCrFeNi high entropy alloy prepared via electro-deoxidization of the metal oxides and vacuum hot pressing sintering process, J. Alloys Compd., 864(2021), art. No. 158717. doi: 10.1016/j.jallcom.2021.158717
      [54]
      W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26(2012), p. 44. doi: 10.1016/j.intermet.2012.03.005
      [55]
      Z. Jiang, R. Wei, W.Z. Wang, et al., Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying, J. Mater. Sci. Technol., 100(2022), p. 20. doi: 10.1016/j.jmst.2021.04.068
      [56]
      D. Kumar, O. Maulik, S. Kumar, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Impact of tungsten on phase evolution in nanocrystalline AlCuCrFeMnWx (x  =  0, 0.05, 0.1 and 0.5 mol) high entropy alloys, Mater. Res. Express, 4(2017), No. 11, art. No. 114004. doi: 10.1088/2053-1591/aa96df
      [57]
      D. Kumar, O. Maulik, A.S. Bagri, Y.V.S.S. Prasad, and V. Kumar, Microstructure and characterization of mechanically alloyed equiatomic AlCuCrFeMnW high entropy alloy, Mater. Today, 3(2016), No. 9, p. 2926.
      [58]
      D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, and V. Kumar, Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering, Mater. Chem. Phys., 210(2018), p. 71. doi: 10.1016/j.matchemphys.2017.08.049
      [59]
      D. Kumar, O. Maulik, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Understanding the effect of tungsten on corrosion behavior of AlCuCrFeMnWx high-entropy alloys in 3.5 wt.% NaCl solution, J. Mater. Eng. Perform., 27(2018), No. 9, p. 4481. doi: 10.1007/s11665-018-3536-y
      [60]
      M.Y. He, Y.F. Shen, N. Jia, and P.K. Liaw, C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy, Appl. Mater. Today, 25(2021), art. No. 101162. doi: 10.1016/j.apmt.2021.101162
      [61]
      L.Y. Liu, Y. Zhang, J.H. Han, et al., Nanoprecipitate-strengthened high-entropy alloys, Adv. Sci., 8(2021), No. 23, art. No. 2100870. doi: 10.1002/advs.202100870
      [62]
      H. Inui, K. Kishida, L. Li, A.M. Manzoni, S. Haas, and U. Glatzel, Uniaxial mechanical properties of face-centered cubic single- and multiphase high-entropy alloys, MRS Bull., 47(2022), No. 2, p. 168. doi: 10.1557/s43577-022-00280-y
      [63]
      P.A. Ibrahim, İ. Özkul, and C.A. Canbay, An overview of high-entropy alloys, Emergent Mater., 5(2022), No. 6, p. 1779. doi: 10.1007/s42247-022-00349-z
      [64]
      J.J. Lian, X.G. Ma, Z.Y. Jiang, C.S. Lee, and J.W. Zhao, A review of the effect of tungsten alloying on the microstructure and properties of steels, Tungsten, (2022), p. 1.
      [65]
      Y.C. Xie, H. Cheng, Q.H. Tang, W. Chen, W.K. Chen, and P.Q. Dai, Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering, Intermetallics, 93(2018), p. 228. doi: 10.1016/j.intermet.2017.09.013
      [66]
      G. Qin, R.R. Chen, H.T. Zheng, et al., Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition, J. Mater. Sci. Technol., 35(2019), No. 4, p. 578. doi: 10.1016/j.jmst.2018.10.009
      [67]
      H.W. King, Quantitative size-factors for metallic solid solutions, J. Mater. Sci., 1(1966), No. 1, p. 79. doi: 10.1007/BF00549722
      [68]
      H.L. Yan, H.X. Liu, Y. Zhao, et al., Impact of B alloying on ductility and phase transition in the Ni–Mn-based magnetic shape memory alloys: Insights from first-principles calculation, J. Mater. Sci. Technol., 74(2021), p. 27. doi: 10.1016/j.jmst.2020.10.010
      [69]
      H.L. Yan, Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo, Determination of strain path during martensitic transformation in materials with two possible transformation orientation relationships from variant self-organization, Acta Mater., 202(2021), p. 112. doi: 10.1016/j.actamat.2020.10.054
      [70]
      T.B. Massalski and U. Mizutani, Electronic structure of Hume-Rothery phases, Prog. Mater. Sci., 22(1978), No. 3-4, p. 151. doi: 10.1016/0079-6425(78)90001-4
      [71]
      A. Jacob, C. Schmetterer, L. Singheiser, A. Gray-Weale, B. Hallstedt, and A. Watson, Modeling of Fe–W phase diagram using first principles and phonons calculations, Calphad, 50(2015), p. 92. doi: 10.1016/j.calphad.2015.04.010
      [72]
      A.F. Sheykhlari, H. Arabi, S.M.A. Boutorabi, and C. Cayron, Effect of chromium content on microstructural evolution of CoNiAlW superalloy, Appl. Phys. A, 128(2022), No. 8, art. No. 719. doi: 10.1007/s00339-022-05768-7
      [73]
      H. Okamoto, M.E. Schlesinger, and E.M. Mueller, Binary Alloy Phase Diagrams, ASM International, Cleveland, 2016.
      [74]
      R.B. Chang, W. Fang, H.Y. Yu, et al., Heterogeneous banded precipitation of (CoCrNi)93Mo7 medium entropy alloys towards strength–ductility synergy utilizing compositional inhomogeneity, Scripta Mater., 172(2019), p. 144. doi: 10.1016/j.scriptamat.2019.07.026
      [75]
      Z.F. He, N. Jia, H.W. Wang, H.L. Yan, and Y.F. Shen, Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature, J. Mater. Sci. Technol., 86(2021), p. 158. doi: 10.1016/j.jmst.2020.12.079
      [76]
      Z.F. He, N. Jia, H.L. Yan, et al., Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy, Int. J. Plast., 139(2021), art. No. 102965. doi: 10.1016/j.ijplas.2021.102965
      [77]
      W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu, Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy, Scripta Mater., 68(2013), No. 7, p. 526. doi: 10.1016/j.scriptamat.2012.12.002
      [78]
      A. Balyanov, Corrosion resistance of ultra fine-grained Ti, Scripta Mater., 51(2004), No. 3, p. 225. doi: 10.1016/j.scriptamat.2004.04.011
      [79]
      Y. Qiu, M.A. Gibson, H.L. Fraser, and N. Birbilis, Corrosion characteristics of high entropy alloys, Mater. Sci. Technol., 31(2015), No. 10, p. 1235. doi: 10.1179/1743284715Y.0000000026

    Catalog


    • /

      返回文章
      返回