留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 8
Aug.  2023

图(13)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  584
  • HTML全文浏览量:  237
  • PDF下载量:  57
  • 被引次数: 0
Qinghai Ma, Guangsheng Liu, Xiaocong Yang, and Lijie Guo, Physical model investigation on effects of drainage condition and cement addition on consolidation behavior of tailings slurry within backfilled stopes, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1490-1501. https://doi.org/10.1007/s12613-023-2642-5
Cite this article as:
Qinghai Ma, Guangsheng Liu, Xiaocong Yang, and Lijie Guo, Physical model investigation on effects of drainage condition and cement addition on consolidation behavior of tailings slurry within backfilled stopes, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1490-1501. https://doi.org/10.1007/s12613-023-2642-5
引用本文 PDF XML SpringerLink
研究论文

排水条件和水泥用量对尾砂料浆固结行为影响的物理模型试验研究



  • 通讯作者:

    刘光生    E-mail: liuguangsheng@bgrimm.com

    郭利杰    E-mail: guolijie@bgrimm.com

文章亮点

  • (1) 研究了排水条件和水泥用量对尾砂料浆自重固结行为的影响规律。
  • (2) 对比了排水条件和水泥用量对料浆孔隙水压力消散作用的差异性。
  • (3) 阐明了采场底部料浆孔隙水压力通常对水泥添加量不敏感的原因。
  • (4) 探究了尾砂胶结料浆能比非胶结料浆排出更多孔隙水的内在机制。
  • 采场尾砂充填料浆自重固结过程中,料浆孔隙水压力和总应力随时间连续变化。掌握充填料浆固结行为及固结过程中料浆应力状态,对评估采场充填挡墙承载能力和优化制定采场充填方案十分重要。排水条件和水泥用量是影响尾砂料浆固结行为的关键因素。利用自制的料浆固结柱物理模型,考虑三种排水条件(不排水、部分排水和完全排水),试验研究了不同水泥用量(0%、4.76wt%和6.25wt%)尾砂料浆的自重固结过程,系统测试了不同时刻料浆孔隙水压力、下沉量、排水量及试验完成后料浆含水量,分析了排水条件和水泥用量对尾砂料浆固结行为的影响规律。结果表明:改善排水边界条件或提高水泥添加量均有助于尾砂料浆孔隙水压力消散,但前者相对更有利于促进料浆排水固结;在同一排水条件下,水泥用量从0wt%增加至6.25wt%,模型底部料浆孔隙水压力消散速度显著加快,但料浆孔隙水压力最终稳定值无明显差异;料浆最终下沉量与模型的排水条件无关,但增大水泥用量会明显减小料浆最终下沉量;在同一排水条件下,胶结料浆在自重固结过程中能够比非胶结料浆排出更多的孔隙水。
  • Research Article

    Physical model investigation on effects of drainage condition and cement addition on consolidation behavior of tailings slurry within backfilled stopes

    + Author Affiliations
    • Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes. This process requires a good understanding of self-weight consolidation behaviors of the tailings slurry within practical stopes, where many factors can have significant effects on the consolidation, including drainage condition and cement addition. In this paper, the prepared tailings slurry with different cement contents (0, 4.76wt%, and 6.25wt%) was poured into 1.2 m-high columns, which allowed three drainage scenarios (undrained, partial lateral drainage near the bottom part, and full lateral drainage boundaries) to investigate the effects of drainage condition and cement addition on the consolidation behavior of the tailings slurry. The consolidation behavior was analyzed in terms of pore water pressure (PWP), settlement, volume of drainage water, and residual water content. The results indicate that increasing the length of the drainage boundary or cement content aids in PWP dissipation. In addition, constructing an efficient drainage boundary was more favorable to PWP dissipation than increasing cement addition. The final stable PWP on the column floor was not sensitive to cement addition. The final settlement of uncemented tailings slurry was independent of drainage conditions, and that of cemented tailings slurry decreased with the increase in cement addition. Notably, more pore water can drain out from the cemented tailings slurry than the uncemented tailings slurry during consolidation.
    • loading
    • Supplementary Information-10.1007s12613-023-2642-5.docx
    • [1]
      G.D. Lu, X.G. Yang, S.C. Qi, G. Fan, and J.W. Zhou, Coupled chemo–hydro–mechanical effects in one-dimensional accretion of cemented mine fills, Eng. Geol., 267(2020), art. No. 105495. doi: 10.1016/j.enggeo.2020.105495
      [2]
      G.S. Liu, L. Li, X.C. Yang, and L.J. Guo, A numerical analysis of the stress distribution in backfilled stopes considering nonplanar interfaces between the backfill and rock walls, Int. J. Geotech. Eng., 10(2016), No. 3, p. 271. doi: 10.1080/19386362.2015.1132123
      [3]
      L. Li and P.Y. Yang, A numerical evaluation of continuous backfilling in cemented paste backfilled stope through an application of wick drains, Int. J. Min. Sci. Technol., 25(2015), No. 6, p. 897. doi: 10.1016/j.ijmst.2015.09.004
      [4]
      L. Li and M. Aubertin, Horizontal pressure on barricades for backfilled stopes. Part I: Fully drained conditions, Can. Geotech. J., 46(2009), No. 1, p. 37. doi: 10.1139/T08-104
      [5]
      L. Li and M. Aubertin, Horizontal pressure on barricades for backfilled stopes. Part II: Submerged conditions, Can. Geotech. J., 46(2009), No. 1, p. 47. doi: 10.1139/T08-105
      [6]
      X. Zhao, A. Fourie, R. Veenstra, and C.C. Qi, Safety of barricades in cemented paste-backfilled stopes, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1054. doi: 10.1007/s12613-020-2006-3
      [7]
      A. Fourie, M. Helinski, and M. Fahey, Optimising the use of cemented backfill by using an effective stress constitutive model, [in] Proceedings of the Fourth International Seminar on Deep and High Stress Mining, Perth, 2007, p. 425.
      [8]
      M.D. Bonin, M. Nuth, A.M. Dagenais, and A.R. Cabral, Experimental study and numerical reproduction of self-weight consolidation behavior of thickened tailings, J. Geotech. Geoenviron. Eng., 140(2014), No. 12, art. No. 04014068.
      [9]
      K. Been and G.C. Sills, Self-weight consolidation of soft soils: An experimental and theoretical study, Géotechnique, 31(1981), No. 4, p. 519.
      [10]
      J. Zheng, L. Li, and Y.C. Li, Solutions to estimate the excess PWP, settlement and volume of draining water after slurry deposition. Part I: Impervious base, Environ. Earth Sci., 79(2020), No. 6, art. No. 124. doi: 10.1007/s12665-020-8876-x
      [11]
      J. Zheng, L. Li, and Y.C. Li, Solutions to estimate the excess PWP, settlement and volume of draining water after slurry deposition. Part II: Pervious base, Environ. Earth Sci., 79(2020), No. 11, art. No. 275. doi: 10.1007/s12665-020-09014-2
      [12]
      D.F. McCarthy, Essentials of Soil Mechanics and Foundations, Reston Publishing Company, Virginia, 1977.
      [13]
      R.E. Gibson, The progress of consolidation in a clay layer increasing in thickness with time, Géotechnique, 8(1958), No. 4, p. 171.
      [14]
      R.E. Gibson, R.L. Schiffman, and K.W. Cargill, The theory of one-dimensional consolidation of saturated clays. II. Finite nonlinear consolidation of thick homogeneous layers, Can. Geotech. J., 18(1981), No. 2, p. 280. doi: 10.1139/t81-030
      [15]
      R.E. Gibson, G.L England, and M. J. L. Hussey, The theory of one-dimensional consolidation of saturated clays: I. Finite nonlinear consildation of thin homogeneous layers, Geotechnique, 17(1967), No. 3, p. 261. doi: 10.1680/geot.1967.17.3.261
      [16]
      J.H. Qin, J. Zheng, and L. Li, An analytical solution to estimate the settlement of tailings or backfill slurry by considering the sedimentation and consolidation, Int. J. Min. Sci. Technol., 31(2021), No. 3, p. 463. doi: 10.1016/j.ijmst.2021.02.004
      [17]
      P.Y. Yang, Investigation of the Geomechanical Behavior of Mine Backfill and its Interaction with Rock Walls and Barricades [Dissertation], École Polytechnique de Montréal, Montréal, 2016.
      [18]
      E.M. Jaouhar and L. Li, Effect of drainage and consolidation on the pore water pressures and total stresses within backfilled stopes and on barricades, Adv. Civ. Eng., 2019(2019), p. 1.
      [19]
      L. Li, A new concept of backfill design—Application of wick drains in backfilled stopes, Int. J. Min. Sci. Technol., 23(2013), No. 5, p. 763. doi: 10.1016/j.ijmst.2013.08.022
      [20]
      M. Fall, D. Adrien, J.C. Célestin, M. Pokharel, and M. Touré, Saturated hydraulic conductivity of cemented paste backfill, Miner. Eng., 22(2009), No. 15, p. 1307. doi: 10.1016/j.mineng.2009.08.002
      [21]
      E. Yilmaz, T. Belem, and M. Benzaazoua, One-dimensional consolidation parameters of cemented paste backfills, Gospod. Surowcami Miner., 28(2012), No. 4, p. 29.
      [22]
      E. Yilmaz, T. Belem, B. Bussière, M. Mbonimpa, and M. Benzaazoua, Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents, Constr. Build. Mater., 75(2015), p. 99. doi: 10.1016/j.conbuildmat.2014.11.008
      [23]
      M. Helinski, A. Fourie, M. Fahey, and M. Ismail, Assessment of the self-desiccation process in cemented mine backfills, Can. Geotech. J., 44(2007), No. 10, p. 1148. doi: 10.1139/T07-051
      [24]
      A. Ghirian and M. Fall, Coupled thermo–hydro–mechanical–chemical behaviour of cemented paste backfill in column experiments. Part I: Physical, hydraulic and thermal processes and characteristics, Eng. Geol., 164(2013), p. 195. doi: 10.1016/j.enggeo.2013.01.015
      [25]
      J.P. Doherty, A. Hasan, G.H. Suazo, and A. Fourie, Investigation of some controllable factors that impact the stress state in cemented paste backfill, Can. Geotech. J., 52(2015), No. 12, p. 1901. doi: 10.1139/cgj-2014-0321
      [26]
      B.D. Thompson, W.F. Bawden, and M.W. Grabinsky, In situ measurements of cemented paste backfill at the Cayeli Mine, Can. Geotech. J., 49(2012), No. 7, p. 755. doi: 10.1139/t2012-040
      [27]
      M.W. Grabinsky, In situ monitoring for ground truthing paste backfill designs, [in] Proceedings of the Thirteenth International Seminar on Paste and Thickened Tailings, Toronto, 2010, p. 85.
      [28]
      B.D. Thompson, M.W. Grabinsky, W.F. Bawden, and D.B. Counter, In-situ measurements of cemented paste backfill in long-hole stopes, [in] Proceedings of the 3rd Canada–US Rock Mechanics Symposium, Toronto, 2009, p. 197.
      [29]
      T. Belem, A. Harvey, R. Simon, and M. Aubertin, Measurement and prediction of internal stresses in an underground opening during its filling with cemented fill, [in] 5th International Symposium on Ground Support in Mining and Underground Construction, Perth, 2004, p. 619.
      [30]
      B.E. Wickland and G.W. Wilson, Self-weight consolidation of mixtures of mine waste rock and tailings, Can. Geotech. J., 42(2005), No. 2, p. 327. doi: 10.1139/t04-108
      [31]
      N. Abdul-Hussain and M. Fall, Thermo–hydro–mechanical behaviour of sodium silicate-cemented paste tailings in column experiments, Tunn. Undergr. Space Technol., 29(2012), p. 85. doi: 10.1016/j.tust.2012.01.004
      [32]
      A. Ghirian and M. Fall, Coupled thermo–hydro–mechanical–chemical behaviour of cemented paste backfill in column experiments Part II: Mechanical, chemical and microstructural processes and characteristics, Eng. Geol., 170(2014), p. 11. doi: 10.1016/j.enggeo.2013.12.004
      [33]
      F. Saleh-Mbemba and M. Aubertin, Physical model testing and analysis of hard rock tailings consolidation considering the effect of a drainage inclusion, Geotech. Geol. Eng., 39(2021), No. 4, p. 2777. doi: 10.1007/s10706-020-01656-0
      [34]
      F. Saleh-Mbemba and M. Aubertin, Characterization of self-weight consolidation of fine-grained mine tailings using moisture sensors, Geotech. Test. J., 41(2018), No. 3, art. No. 20170035. doi: 10.1520/GTJ20170035
      [35]
      A. Ghirian and M. Fall, Coupled behavior of cemented paste backfill at early ages, Geotech. Geol. Eng., 33(2015), No. 5, p. 1141. doi: 10.1007/s10706-015-9892-6
      [36]
      T. Belem, O. El Aatar, B. Bussière, and M. Benzaazoua, Gravity-driven 1-D consolidation of cemented paste backfill in 3-m-high columns, Innov. Infrastructure Solut., 1(2016), No. 1, art. No. 37. doi: 10.1007/s41062-016-0039-2
      [37]
      T. Belem, O. El Aatar, B. Bussiere, M. Benzaazoua, M. Fall, and E. Yilmaz, Characterisation of self-weight consolidated paste backfill, [in] Paste 2006: Proceedings of the Ninth International Seminar on Paste and Thickened Tailings, Perth, 2006, p. 333..
      [38]
      M. Nujaim, T. Belem, and A. Giraud, Experimental tests on a small-scale model of a mine stope to study the behavior of waste rock barricades during backfilling, Minerals, 10(2020), No. 11, art. No. 941. doi: 10.3390/min10110941
      [39]
      N. El Mkadmi, M. Aubertin, and L. Li, Effect of drainage and sequential filling on the behavior of backfill in mine stopes, Can. Geotech. J., 51(2014), No. 1, p. 1. doi: 10.1139/cgj-2012-0462
      [40]
      M. Helinski, M. Fahey, and A. Fourie, Numerical modeling of cemented mine backfill deposition, J. Geotech. Geoenviron. Eng., 133(2007), No. 10, p. 1308. doi: 10.1061/(ASCE)1090-0241(2007)133:10(1308)
      [41]
      M. Shahsavari and M. Grabinsky, Cemented paste backfill consolidation with deposition-dependent boundary conditions, [in] Proceedings of the 67th Canadian Geotechnical Conference, Regina, 2014.

    Catalog


    • /

      返回文章
      返回