留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 11
Nov.  2023

图(15)  / 表(7)

数据统计

分享

计量
  • 文章访问数:  954
  • HTML全文浏览量:  152
  • PDF下载量:  46
  • 被引次数: 0
Jinxiang You, Jing Wang, Mingjun Rao, Xin Zhang, Jun Luo, Zhiwei Peng, and Guanghui Li, An integrated and efficient process for borax preparation and magnetite recovery from soda-ash roasted ludwigite ore under CO–CO2–N2 atmosphere, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2169-2181. https://doi.org/10.1007/s12613-023-2643-4
Cite this article as:
Jinxiang You, Jing Wang, Mingjun Rao, Xin Zhang, Jun Luo, Zhiwei Peng, and Guanghui Li, An integrated and efficient process for borax preparation and magnetite recovery from soda-ash roasted ludwigite ore under CO–CO2–N2 atmosphere, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2169-2181. https://doi.org/10.1007/s12613-023-2643-4
引用本文 PDF XML SpringerLink
研究论文

CO–CO2–N2气氛下硼镁铁矿钠化焙烧制备硼砂及磁铁精矿的工艺研究



  • 通讯作者:

    饶明军    E-mail: mj.rao@csu.edu.cn

    李光辉    E-mail: liguangh@csu.edu.cn

文章亮点

  • (1) 系统研究了硼镁铁矿在CO–CO2–N2气氛下焙烧转化的影响规律。
  • (2) 开发了硼镁铁矿控制气氛焙烧同步制备硼砂和磁铁精矿工艺。
  • (3) 92%wt%的硼在湿磨过程中浸出,89wt%的铁富集于磁铁精矿中。
  • (4) 含硼浸出液通过碳酸化法分离制备高纯硼砂。
  • 为实现硼镁铁矿资源的高效综合利用,本文提出了一种硼镁铁矿钠化焙烧–湿磨浸出–磁选–碳分实现硼/铁高效分离的工艺。研究了焙烧参数包括:焙烧温度、时间、碳酸钠用量以及还原势CO/(CO+CO2)对硼、铁同步分离指标的影响。在优化的焙烧条件下:焙烧温度850°C、焙烧时间60 min、碳酸钠用量为20wt%以及还原势CO/(CO+CO2)为10vol%,92%的硼在湿磨过程中直接浸出到溶液中,约89%的铁通过磁选富集于磁铁精矿中,磁铁精矿的铁品位为62wt%。高品位磁铁精矿可以作为钢铁行业的原料。拉曼光谱和11B核磁共振波谱结果表明硼在浸出液中以$ \mathrm{B}(\mathrm{O}{\mathrm{H})}_{4}^{-} $离子的形式存在,浸出液通过碳分–结晶制备出高纯硼砂产品。
  • Research Article

    An integrated and efficient process for borax preparation and magnetite recovery from soda-ash roasted ludwigite ore under CO–CO2–N2 atmosphere

    + Author Affiliations
    • To realize the comprehensive utilization of ludwigite ore, an integrated and efficient route for the boron and iron separation was proposed in this work, which via soda-ash roasting under CO–CO2–N2 atmosphere followed by grind-leaching, magnetic separation, and CO2 carbonation. The effects of roasting temperature, roasting time, CO/(CO+CO2) composition, and Na2CO3 dosage on the boron and iron separation indices were primarily investigated. Under the optimized conditions of the roasting temperature of 850°C, roasting time of 60 min, soda ash dosage of 20wt%, and CO/(CO+CO2) of 10vol%, 92% of boron was leached during wet grinding, and 88.6% of iron was recovered during the magnetic separation and magnetic concentrate with a total iron content of 61.51wt%. Raman spectra and 11B NMR results indicated that boron exists as ${\rm{B}}({\rm OH})_{4}^{-}$ in the leachate, from which high-purity borax pentahydrate could be prepared by CO2 carbonation.
    • loading
    • Supplementary Information-10.1007s12613-023-2643-4.docx
    • [1]
      E.R. Burkhardt and K. Matos, Boron reagents in process chemistry: Excellent tools for selective reductions, Chem. Rev., 106(2006), No. 7, p. 2617. doi: 10.1021/cr0406918
      [2]
      N.A. El-Alaily and R.M. Mohamed, Effect of irradiation on some optical properties and density of lithium borate glass, Mater. Sci. Eng. B, 98(2003), No. 3, p. 193. doi: 10.1016/S0921-5107(02)00587-1
      [3]
      C. Mermer and H. Şengül, Addressing potential resource scarcity for boron mineral: A system dynamics perspective, J. Clean. Prod., 270(2020), art. No. 122192. doi: 10.1016/j.jclepro.2020.122192
      [4]
      V. Thakur, A. Singh, R. Punia, S. Dahiya, and L. Singh, Structural properties and electrical transport characteristics of modified lithium borate glass ceramics, J. Alloys Compd., 696(2017), p. 529. doi: 10.1016/j.jallcom.2016.11.230
      [5]
      X. Zhang, G.H. Li, J.X. You, et al., Extraction of boron from ludwigite ore: Mechanism of soda-ash roasting of lizardite and szaibelyite, Minerals, 9(2019), No. 9, art. No. 533. doi: 10.3390/min9090533
      [6]
      M.X. Zhu, X.R. Zhou, H. Zhang, L. Wang, and H.Y. Sun, International trade evolution and competition prediction of boron ore: Based on complex network and link prediction, Resour. Policy, 82(2023), art. No. 103542. doi: 10.1016/j.resourpol.2023.103542
      [7]
      S. Jiao, H.Y. Zheng, Y.Y. Qu, B.Q. Liu, and B.B. Han, Supply and demand situation of global boron resources, Nat. Resour. Inf., 2020, No. 10, p. 85.
      [8]
      J. An and X.X. Xue, Life cycle environmental impact assessment of borax and boric acid production in China, J. Clean. Prod., 66(2014), p. 121. doi: 10.1016/j.jclepro.2013.10.020
      [9]
      Z.P. Zhu, J.X. You, X. Zhang, et al., Recycling excessive alkali from reductive soda ash roasted ludwigite ore: Toward a zero-waste approach, ACS Sustainable Chem. Eng., 8(2020), No. 13, p. 5317. doi: 10.1021/acssuschemeng.0c00582
      [10]
      L. Ye, Z.W. Peng, R. Tian, et al., A novel process for highly efficient separation of boron and iron from ludwigite ore based on low-temperature microwave roasting, Powder Technol., 410(2022), art. No. 117848. doi: 10.1016/j.powtec.2022.117848
      [11]
      Y. Li, J.T. Gao, X. Lan, and Z.C. Guo, A novel method for efficient recovery of boron from boron-bearing iron concentrate: Mineral phase transformation and low-temperature separation via super-gravity, Miner. Eng., 189(2022), art. No. 107899. doi: 10.1016/j.mineng.2022.107899
      [12]
      X. Zhang, G.H. Li, M.J. Rao, et al., Co-conversion mechanisms of boron and iron components of ludwigite ore during reductive soda-ash roasting, Metals, 10(2020), No. 11, art. No. 1514. doi: 10.3390/met10111514
      [13]
      G.H. Li, L. Fang, X. Zhang, et al., Utilization of the MgO-rich residue originated from ludwigite ore: Hydrothermal synthesis of MHSH whiskers, Minerals, 7(2017), No. 8, art. No. 138. doi: 10.3390/min7080138
      [14]
      Y.J. Liu, T. Jiang, W.J. Huang, C.H. Liu, J.P. Wang, and X.X. Xue, High temperature dielectric properties of ludwigite and its effect on microwave heating process, J. Microw. Power Electromagn. Energy, 53(2019), No. 3, p. 195. doi: 10.1080/08327823.2019.1643650
      [15]
      G. Wang, Q.G. Xue, and J.S. Wang, Carbothermic reduction characteristics of ludwigite and boron-iron magnetic separation, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1000. doi: 10.1007/s12613-018-1650-3
      [16]
      G.J. Cheng, X.Z. Liu, H. Yang, X.X. Xue, and L.J. Li, Sintering and smelting property investigations of ludwigite, Processes, 10(2022), No. 1, art. No. 159. doi: 10.3390/pr10010159
      [17]
      S.L. Liu, C.M. Cui, and X.P. Zhang, Pyrometallurgical separation of boron from iron in ludwigite ore, ISIJ Int., 38(1998), No. 10, p. 1077. doi: 10.2355/isijinternational.38.1077
      [18]
      G. Wang, Q.G. Xue, and J.S. Wang, Effect of Na2CO3 on reduction and melting separation of ludwigite/coal composite pellet and property of boron-rich slag, Trans. Nonferrous Met. Soc. China, 26(2016), No. 1, p. 282. doi: 10.1016/S1003-6326(16)64116-X
      [19]
      Y.Z. Xu, T. Jiang, H.Y. Gao, W.Y. Chen, and X.X. Xue, The changes of surface properties and enhancement of B2O3 leaching ratio of boron concentrate via wet ball milling, Powder Technol., 326(2018), p. 89. doi: 10.1016/j.powtec.2017.12.056
      [20]
      G.H. Li, B.J. Liang, M.J. Rao, Y.B. Zhang, and T. Jiang, An innovative process for extracting boron and simultaneous recovering metallic iron from ludwigite ore, Miner. Eng., 56(2014), p. 57. doi: 10.1016/j.mineng.2013.10.030
      [21]
      B.J. Liang, G.H. Li, M.J. Rao, Z.W. Peng, Y.B. Zhang, and T. Jiang, Water leaching of boron from soda-ash-activated ludwigite ore, Hydrometallurgy, 167(2017), p. 101. doi: 10.1016/j.hydromet.2016.11.004
      [22]
      J.X. You, J. Wang, J. Luo, Z.W. Peng, M.J. Rao, and G.H. Li, A facile route to the value-added utilization of ludwigite ore: Boron extraction and MxMg1−xFe2O4 spinel ferrites preparation, J. Clean. Prod., 375(2022), art. No. 134206. doi: 10.1016/j.jclepro.2022.134206
      [23]
      General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, and Standardization Administration of the People’s Republic of China, GB/T 6730.65-2009: Iron Ores—Determination of Total Iron Content—Titanium (III) Chloride Reduction Potassium Dichromate Titration Methods (Routine Method), General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, and Standardization Administration of the People’s Republic of China, Beijing, 2009.
      [24]
      S. Bhagyaraj, M.A. Al-Ghouti, P. Kasak, and I. Krupa, An updated review on boron removal from water through adsorption processes, Emergent Mater., 4(2021), No. 5, p. 1167. doi: 10.1007/s42247-021-00197-3
      [25]
      M. Dolati, A.A. Aghapour, H. Khorsandi, and S. Karimzade, Boron removal from aqueous solutions by electrocoagulation at low concentrations, J. Environ. Chem. Eng., 5(2017), No. 5, p. 5150. doi: 10.1016/j.jece.2017.09.055
      [26]
      F.L. Theiss, G.A. Ayoko, and R.L. Frost, Removal of boron species by layered double hydroxides: A review, J. Colloid Interface Sci., 402(2013), p. 114. doi: 10.1016/j.jcis.2013.03.051
      [27]
      Y.Q. Zhou, C.H. Fang, Y. Fang, and F.Y. Zhu, Polyborates in aqueous borate solution: A Raman and DFT theory investigation, Spectrochim. Acta A Mol. Biomol. Spectrosc., 83(2011), No. 1, p. 82. doi: 10.1016/j.saa.2011.07.081
      [28]
      Y.Q. Zhou, Y. Fang, C.H. Fang, F.Y. Zhu, H.W. Ge, and Q.L. Chen, Solution structure of energy stored system I: Aqua-$ \mathrm{B}(\mathrm{O}\mathrm{H}{)}_{4}^{-} $: A DFT, car-parrinello molecular dynamics, and Raman study, J. Phys. Chem. B, 117(2013), No. 39, p. 11709. doi: 10.1021/jp405708e
      [29]
      F.Y. Zhu, W.Q. Zhang, H.Y. Liu, et al., Micro-Raman and density functional theory analyses of ion pairs in concentrated sodium tetrahydroxyborate droplets, Spectrochim. Acta A, 224(2020), art. No. 117308. doi: 10.1016/j.saa.2019.117308
      [30]
      J.T. Kloprogge, D. Wharton, L. Hickey, and R.L. Frost, Infrared and Raman study of interlayer anions $ {\mathrm{C}\mathrm{O}}_{3}^{2-} $, $ {\mathrm{N}\mathrm{O}}_{3}^{-} $, $ {\mathrm{S}\mathrm{O}}_{4}^{2-} $ and $ {\mathrm{C}\mathrm{l}\mathrm{O}}_{4}^{-} $ in Mg/Al-hydrotalcite, Am. Mineral., 87(2002), No. 5-6, p. 623. doi: 10.2138/am-2002-5-604
      [31]
      S.J. Palmer, R.L. Frost, G. Ayoko, and T. Nguyen, Synthesis and Raman spectroscopic characterisation of hydrotalcite with$ {\mathrm{C}\mathrm{O}}_{3}^{2-} $ and (MoO4)2− anions in the interlayer, J. Raman Spectrosc., 39(2008), p. 395. doi: 10.1002/jrs.1838
      [32]
      W. Chen, L.Z. Ouyang, J.W. Liu, et al., Hydrolysis and regeneration of sodium borohydride (NaBH4) – A combination of hydrogen production and storage, J. Power Sources, 359(2017), p. 400. doi: 10.1016/j.jpowsour.2017.05.075
      [33]
      L.Z. Ouyang, W. Chen, J.W. Liu, M. Felderhoff, H. Wang, and M. Zhu, Enhancing the regeneration process of consumed NaBH4 for hydrogen storage, Adv. Energy Mater., 7(2017), No. 19, art. No. 1700299. doi: 10.1002/aenm.201700299
      [34]
      C.L. Qin, L.Z. Ouyang, H. Wang, J.W. Liu, H.Y. Shao, and M. Zhu, Regulation of high-efficient regeneration of sodium borohydride by magnesium-aluminum alloy, Int. J. Hydrogen Energy, 44(2019), No. 55, p. 29108. doi: 10.1016/j.ijhydene.2019.05.010
      [35]
      H. Zhong, L.Z. Ouyang, M.Q. Zeng, et al., Realizing facile regeneration of spent NaBH4 with Mg–Al alloy, J. Mater. Chem. A, 7(2019), No. 17, p. 10723. doi: 10.1039/C9TA00769E
      [36]
      I.K. Battisha, A. EI Beyally, S.A. EI Mongy, and A.M. Nahrawi, Development of the FTIR properties of nano-structure silica gel doped with different rare earth elements, prepared by sol–gel route, J. Sol–Gel Sci. Technol., 41(2007), p. 129. doi: 10.1007/s10971-006-0520-z
      [37]
      A. Fidalgo and L.M. Ilharco, The defect structure of sol-gel-derived silica/polytetrahydrofuran hybrid films by FTIR, J. Non Cryst. Solids, 283(2001), No. 1-3, p. 144. doi: 10.1016/S0022-3093(01)00418-5
      [38]
      I. Garcia-Lodeiro, A. Palomo, A. Fernández-Jiménez, and D.E. MacPhee, Compatibility studies between N–A–S–H and C–A–S–H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O, Cem. Concr. Res., 41(2011), No. 9, p. 923. doi: 10.1016/j.cemconres.2011.05.006
      [39]
      S.A. Devi, D. Philip, and G. Aruldhas, Infrared, polarized Raman, and SERS spectra of borax, J. Solid State Chem., 113(1994), No. 1, p. 157. doi: 10.1006/jssc.1994.1354
      [40]
      A. Winterstein-Beckmann, D. Möncke, D. Palles, E.I. Kamitsos, and L. Wondraczek, Structure and properties of orthoborate glasses in the Eu2O3–(Sr,Eu)O–B2O3 quaternary, J. Phys. Chem. B, 119(2015), No. 7, p. 3259. doi: 10.1021/jp5120465

    Catalog


    • /

      返回文章
      返回