留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 8
Aug.  2023

图(14)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  776
  • HTML全文浏览量:  286
  • PDF下载量:  31
  • 被引次数: 0
Haiyong Cheng, Zemin Liu, Shunchuan Wu, Hong Li, Jiaqi Zhu, Wei Sun, and Guanzhao Jiang, Resistance characteristics of paste pipeline flow in a pulse-pumping environment, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1596-1607. https://doi.org/10.1007/s12613-023-2644-3
Cite this article as:
Haiyong Cheng, Zemin Liu, Shunchuan Wu, Hong Li, Jiaqi Zhu, Wei Sun, and Guanzhao Jiang, Resistance characteristics of paste pipeline flow in a pulse-pumping environment, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1596-1607. https://doi.org/10.1007/s12613-023-2644-3
引用本文 PDF XML SpringerLink
研究论文

脉冲泵压环境膏体管道输送阻力特性研究



  • 通讯作者:

    李红    E-mail: lihongzxl@126.com

    朱加琦    E-mail: kust_zhujiaqi@163.com

文章亮点

  • (1) 基于复杂环管实验、流固耦合数值模拟和微观电镜扫描实验等,系统地研究了脉冲泵压环境下膏体流态和微观颗粒结构
  • (2) 提出了输送管道竖直下行+直管+倾斜下行的组合形式,减少弯管数量或提高弯管曲率半径,可有效减小管道阻力损失的规律
  • (3) 分析了不同管道布置形式下膏体流态差异性,提出了利用最大速度比和速度中心偏移值两流态参数对管道布置形式影响程度进行量化表征
  • 膏体充填是消除矿山工程地质灾害,实现矿山固废绿色处置及支撑深地资源安全回采的关键技术。但膏体浓度高、材料组成复杂,长距离管网输送存在输送阻力大、堵管爆管频发。文章基于复杂环管实验、流固耦合数值模拟和微观电镜扫描实验等,对脉冲泵压环境膏体流态和微观颗粒结构进行了深入分析。结果表明:复杂管网布置下,膏体流动阻力与管道曲率、角度存在紧密联系,采用竖直下行+直管+倾斜下行的组合形式,减少弯管数量或提高弯管曲率半径,可有效减小管道阻力损失。利用最大速度比和速度中心偏移值两流态参数可以对管道布置形式的差异性对阻力特性影响规律进行量化表征,相关性达到96%。颗粒分布状态、颗粒接触作用力会对膏体流动阻力产生影响,均匀的颗粒状态和较弱的颗粒间作用力有利于稳态输送。泵压脉冲环境,颗粒间接触作用显著增强,颗粒力链结构更加稳定,阻力损失有所增加,但弯管段颗粒偏移集聚现象减弱,膏体流态均匀性和颗粒运动稳定性显著提高。研究成果对实现安全、高效地膏体充填具有重要的工程意义。
  • Research Article

    Resistance characteristics of paste pipeline flow in a pulse-pumping environment

    + Author Affiliations
    • Paste flow patterns and microscopic particle structures were studied in a pressurized environment generated by a pulse pump. Complex loop-pipe experiments and fluid–solid coupling-based simulations were conducted. The scanning electron microscopy technique was also applied. Results revealed that flow resistance is closely related to pipeline curvature and angle in a complex pipe network. The vertical downward–straight pipe–inclined downward combination was adopted to effectively reduce the loss in resistance along with reducing the number of bends or increasing the radius of bend curvature. The maximum velocity ratio and velocity offset values could quantitatively characterize the influences of different pipeline layouts on the resistance. The correlation reached 96%. Particle distribution and interparticle forces affected flow resistance. Uniform particle states and weak interparticle forces were conducive to steady transport. Pulse pump pressure led to high flow resistance. It could improve pipe flow stability by increasing flow uniformity and particle motion stability. These results can contribute to safe and efficient paste filling.
    • loading
    • Supplementary Information-10.1007s12613-023-2644-3.docx
    • [1]
      C.H. Wang and D.Q. Gan, Study and analysis on the influence degree of particle settlement factors in pipe transportation of backfill slurry, Metals, 11(2021), No. 11, art. No. 1780. doi: 10.3390/met11111780
      [2]
      Z.X. Lu and M.F. Cai, Disposal methods on solid wastes from mines in transition from open-pit to underground mining, Procedia Environ. Sci., 16(2012), p. 715. doi: 10.1016/j.proenv.2012.10.098
      [3]
      H.Z. Dong, N.A. Aziz, H.Z.M. Shafri, and K.A. Bin Ahmad, Numerical study on transportation of cemented paste backfill slurry in bend pipe, Processes, 10(2022), No. 8, art. No. 1454. doi: 10.3390/pr10081454
      [4]
      H.Z. Jiao, W.B. Yang, Z.E. Ruan, J.X. Yu, J.H. Liu, and Y.X. Yang, Microscale mechanism of tailing thickening in metal mines, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1538. doi: 10.1007/s12613-022-2587-0
      [5]
      L.H. Yang, J.C. Li, H.B. Liu, et al., Systematic review of mixing technology for recycling waste tailings as cemented paste backfill in mines of China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1430. doi: 10.1007/s12613-023-2609-6
      [6]
      A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
      [7]
      X. Zhao, A. Fourie, R. Veenstra, and C.C. Qi, Safety of barricades in cemented paste-backfilled stopes, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1054. doi: 10.1007/s12613-020-2006-3
      [8]
      S.H. Yin, Z.P. Yan, X. Chen, et al., Active roof-contact: The future development of cemented paste backfill, Constr. Build. Mater., 370(2023), art. No. 130657. doi: 10.1016/j.conbuildmat.2023.130657
      [9]
      Q.L. Zhang, H. Wu, Y. Feng, D.L. Wang, H.B. Su, and X.S. Li, Rheological and physicomechanical properties of rod milling sand-based cemented paste backfill modified by sulfonated naphthalene formaldehyde condensate, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 225. doi: 10.1007/s12613-021-2397-9
      [10]
      Z.L. Xue, D.Q. Gan, Y.Z. Zhang, and Z.Y. Liu, Rheological behavior of ultrafine-tailings cemented paste backfill in high-temperature mining conditions, Constr. Build. Mater., 253(2020), art. No. 119212. doi: 10.1016/j.conbuildmat.2020.119212
      [11]
      X.B. Qin, C.C. Ji, Y.T. Shen, P. Wang, M.Q. Li, and J.L. Zhang, ECT image recognition of pipe plugging flow patterns based on broad learning system in mining filling, Adv. Civ. Eng., 2021(2021), p. 1.
      [12]
      Z.G. Zhang, X.Z. Shi, and X.F. Lin, Parameter optimization and transportation characteristics of backfilling pipe network based on CFD, Chin. J. Nonferrous. Met., 29(2019), No. 10, p. 2411.
      [13]
      L. Pullum, Pipelining tailings, pastes and backfill, [in] Paste 2007: Proceedings of the Tenth International Seminar on Paste and Thickened Tailings, Perth, p. 113.
      [14]
      A.J.C. Paterson, Pipeline transport of high density slurries: A historical review of past mistakes, lessons learned and current technologies, Min. Technol., 121(2012), No. 1, p. 37. doi: 10.1179/1743286311Y.0000000020
      [15]
      H.W. Shi, J.R. Huang, D.P. Qiao, G.L. Teng, and B. Wang, Simulation of long distance paste filling pipeline transportation in ultra deep well based on ANSYS FLUENT, Nonferrous Metal. Min. Sect., 72(2020), No. 2, p. 5.
      [16]
      Z.E. Ruan, C.P. Li, and C. Shi, Numerical simulation of flocculation and settling behavior of whole-tailings particles in deep-cone thickener, J. Cent. South Univ., 23(2016), No. 3, p. 740. doi: 10.1007/s11771-016-3119-8
      [17]
      L.E. He, Study on Pipeline Transport Parameter Optimization of Laterite Mine [Dissertation], Wuhan University of Technology, Wuhan, 2009, p. 48.
      [18]
      A. Leonardi, F.K. Wittel, M. Mendoza, and H.J. Herrmann, Coupled DEM-LBM method for the free-surface simulation of heterogeneous suspensions, Comput. Part. Mech., 1(2014), No. 1, p. 3. doi: 10.1007/s40571-014-0001-z
      [19]
      S.G. Chen, Development of LBM-DEM for Bingham Suspension with Application to Self-compacting Concrete [Dissertation], Tsinghua University, Beijing, 2014, p. 35.
      [20]
      F.Y. Lyu, C.H. Ling, H. Li, X.G. Liu, J. Gao, and M. Wu, Experimental research of how the boundary layer lower the pipe drag reduction in transport of dense paste, Lubr. Sci., 29(2017), No. 6, p. 411. doi: 10.1002/ls.1377
      [21]
      F. Bouzit, M. Bouzit, and M. Mokeddem, Study of the rheological behaviour and the curvature radius effects on a non Newtonian fluid flow in a curved square duct, Int. J. Eng. Res. Afr., 59(2022), p. 225. doi: 10.4028/p-ll8x57
      [22]
      B.R. Oliveira, B.C. Leal, L. Pereira Filho, et al., A model to calculate the pressure loss of Newtonian and non-Newtonian fluids flow in coiled tubing operations, J. Petroleum Sci. Eng., 204(2021), art. No. 108640. doi: 10.1016/j.petrol.2021.108640
      [23]
      A.X. Wu, H. Li, H.Y. Cheng, Y.M. Wang, C.P. Li, and Z.E. Ruan, Status and prospects of research on the rheology of paste backfill using unclassified tailings (Part 2): Rheological measurement and prospects, Chin. J. Eng., 43(2021), No. 4, p. 451.
      [24]
      H.N. Lee, Y.K. Lee, J.Y. Park, and J.W. Han, Analysis of flow rate and pressure in syringe-based wound irrigation using Bernoulli’s equation, Sci. Rep., 12(2022), No. 1, art. No. 14957. doi: 10.1038/s41598-022-19402-2
      [25]
      A. Wautier, S. Bonelli, and F. Nicot, Flow impact on granular force chains and induced instability, Phys. Rev. E, 98(2018), No. 4, art. No. 042909. doi: 10.1103/PhysRevE.98.042909

    Catalog


    • /

      返回文章
      返回