留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 11
Nov.  2023

图(14)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  492
  • HTML全文浏览量:  211
  • PDF下载量:  26
  • 被引次数: 0
Ning Fan, Zhihui Li, Yanan Li, Xiwu Li, Yongan Zhang,  and Baiqing Xiong, Residual stress with asymmetric spray quenching for thick aluminum alloy plates, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2200-2211. https://doi.org/10.1007/s12613-023-2645-2
Cite this article as:
Ning Fan, Zhihui Li, Yanan Li, Xiwu Li, Yongan Zhang,  and Baiqing Xiong, Residual stress with asymmetric spray quenching for thick aluminum alloy plates, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2200-2211. https://doi.org/10.1007/s12613-023-2645-2
引用本文 PDF XML SpringerLink
研究论文

铝合金厚板非对称喷淋下淬火残余应力


  • 通讯作者:

    李志辉    E-mail: lzh@grinm.com

    李亚楠    E-mail: liyanan@grinm.com

文章亮点

  • (1) 建立了基于挠度变化的剥层法,可定量分析铝合金厚板沿厚度方向的残余应力。
  • (2) 揭示了铝合金厚板在不同喷淋条件下残余应力分布特征,首次发现了非对称喷淋条件下残余应力反常分布现象。
  • (3) 分析了铝合金厚板淬火过程中不同位置的应力应变演变行为,进一步解释了残余应力反常分布的形成机理。
  • 工业化生产条件下一般采用辊底炉对大规格铝合金厚板进行固溶淬火处理,然而,厚板不同位置喷淋流量不对称或不均匀分布不可避免地导致残余应力分布不均匀,增加了后续机加工过程中控制变形的难度。本研究在自主设计的喷淋装置上对铝合金厚板进行喷淋淬火实验,并采用基于挠度变化的剥层法测试沿厚度方向的残余应力。研究结果表明,在对称喷淋条件下,铝合金厚板的残余应力在厚度方向上呈抛物线型对称分布,随着喷淋流量从0.60 m3/h降低到0.15 m3/h,残余应力水平大约降低了66%。在非对称喷淋条件下,厚板高流量侧的残余应力水平低于低流量侧,二者间的差异随着喷淋流量差异的增加而增大。当两侧的喷淋流量分别为0.60 m3/h和0.15 m3/h时,高流量侧的残余应力比低流量侧小15.38 MPa。有限元模拟结果与实验测试结果一致,即高换热系数表面的残余应力水平低于低换热系数表面。因此,有限元模拟方法可用于分析铝合金淬火过程中不同位置的温度历程和应力应变演变行为,进而预测淬火残余应力水平和分布特征。
  • Research Article

    Residual stress with asymmetric spray quenching for thick aluminum alloy plates

    + Author Affiliations
    • Solution and quenching heat treatments are generally carried out in a roller hearth furnace for large-scale thick aluminum alloy plates. However, the asymmetric or uneven spray water flow rate is inevitable under industrial production conditions, which leads to an asymmetric residual stress distribution. The spray quenching treatment was conducted on self-designed spray equipment, and the residual stress along the thickness direction was measured by a layer removal method based on deflections. Under the asymmetric spray quenching condition, the subsurface stress of the high-flow rate surface was lower than that of the low-flow rate surface, and the difference between the two subsurface stresses increased with the increase in the difference in water flow rates. The subsurface stress underneath the surface with a water flow rate of 0.60 m3/h was 15.38 MPa less than that of 0.15 m3/h. The simulated residual stress by finite element (FE) method of the high heat transfer coefficient (HTC) surface was less than that of the low HTC surface, which is consistent with the experimental results. The FE model can be used to analyze the strain and stress evolution and predict the quenched stress magnitude and distribution.
    • loading
    • [1]
      T. Dursun and C. Soutis, Recent developments in advanced aircraft aluminium alloys, Mater. Des., 56(2014), p. 862. doi: 10.1016/j.matdes.2013.12.002
      [2]
      A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller, Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng. A, 280(2000), No. 1, p. 102. doi: 10.1016/S0921-5093(99)00674-7
      [3]
      A. Azarniya, A.K. Taheri, and K.K. Taheri, Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective, J. Alloys Compd., 781(2019), p. 945. doi: 10.1016/j.jallcom.2018.11.286
      [4]
      P.A. Rometsch, Y. Zhang, and S. Knight, Heat treatment of 7xxx series aluminium alloys—Some recent developments, Trans. Nonferrous Met. Soc. China, 24(2014), No. 7, p. 2003. doi: 10.1016/S1003-6326(14)63306-9
      [5]
      G. Sha and A. Cerezo, Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050), Acta Mater., 52(2004), No. 15, p. 4503. doi: 10.1016/j.actamat.2004.06.025
      [6]
      G.T. Liang and I. Mudawar, Review of spray cooling - Part 1: Single-phase and nucleate boiling regimes, and critical heat flux, Int. J. Heat Mass Transfer, 115(2017), p. 1174.
      [7]
      G.T. Liang and I. Mudawar, Review of spray cooling - Part 2: High temperature boiling regimes and quenching applications, Int. J. Heat Mass Transfer, 115(2017), p. 1206.
      [8]
      J.S. Robinson, D.A. Tanner, and C.E. Truman, 50th anniversary article: The origin and management of residual stress in heat-treatable aluminium alloys, Strain, 50(2014), No. 3, p. 185. doi: 10.1111/str.12091
      [9]
      J. Guo, H.Y. Fu, B. Pan, and R.K. Kang, Recent progress of residual stress measurement methods: A review, Chin. J. Aeronaut., 34(2021), No. 2, p. 54. doi: 10.1016/j.cja.2019.10.010
      [10]
      N.S. Rossini, M. Dassisti, K.Y. Benyounis, and A.G. Olabi, Methods of measuring residual stresses in components, Mater. Des., 35(2012), p. 572. doi: 10.1016/j.matdes.2011.08.022
      [11]
      R. Pan, T. Pirling, J.H. Zheng, J.G. Lin, and C.M. Davies, Quantification of thermal residual stresses relaxation in AA7xxx aluminium alloy through cold rolling, J. Mater. Process. Technol., 264(2019), p. 454. doi: 10.1016/j.jmatprotec.2018.09.034
      [12]
      M.K. Khan, M.E. Fitzpatrick, S.V. Hainsworth, A.D. Evans, and L. Edwards, Application of synchrotron X-ray diffraction and nanoindentation for the determination of residual stress fields around scratches, Acta Mater., 59(2011), No. 20, p. 7508. doi: 10.1016/j.actamat.2011.08.034
      [13]
      K. Tanaka, The cosα method for X-ray residual stress measurement using two-dimensional detector, Mech. Eng. Rev., 6(2019), No. 1, art. No. 18-00378. doi: 10.1299/mer.18-00378
      [14]
      S. Nervi and B.A. Szabó, On the estimation of residual stresses by the crack compliance method, Comput. Meth. Appl. Mech. Eng., 196(2007), No. 37-40, p. 3577. doi: 10.1016/j.cma.2006.10.037
      [15]
      C. Liu and X. Yi, Residual stress measurement on AA6061-T6 aluminum alloy friction stir butt welds using contour method, Mater. Des., 46(2013), p. 366. doi: 10.1016/j.matdes.2012.10.030
      [16]
      R.G. Treuting and W.T. Read, A mechanical determination of biaxial residual stress in sheet materials, J. Appl. Phys., 22(1951), No. 2, p. 130. doi: 10.1063/1.1699913
      [17]
      R. Kopun, L. Škerget, M. Hriberšek, D.S. Zhang, B. Stauder, and D. Greif, Numerical simulation of immersion quenching process for cast aluminium part at different pool temperatures, Appl. Therm. Eng., 65(2014), No. 1-2, p. 74. doi: 10.1016/j.applthermaleng.2013.12.058
      [18]
      Y.B. Dong, W.Z. Shao, L.X. Lu, J.T. Jiang, and L. Zhen, Numerical simulation of residual stress in an Al–Cu alloy block during quenching and aging, J. Mater. Eng. Perform., 24(2015), No. 12, p. 4928. doi: 10.1007/s11665-015-1758-9
      [19]
      G.S. Zhang, C.H. Mao, J. Wang, N. Fan, and T.T. Guo, Numerical analysis and experimental studies on the residual stress of W/2024Al composites, Materials, 12(2019), No. 17, art. No. 2746. doi: 10.3390/ma12172746
      [20]
      C. Şimşir and C.H. Gür, 3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution, J. Mater. Process. Technol., 207(2008), No. 1-3, p. 211. doi: 10.1016/j.jmatprotec.2007.12.074
      [21]
      W.C. Jiang, W. Woo, G.B. An, and J.U. Park, Neutron diffraction and finite element modeling to study the weld residual stress relaxation induced by cutting, Mater. Des., 51(2013), p. 415. doi: 10.1016/j.matdes.2013.04.053
      [22]
      S.R. Yazdi, D. Retraint, and J. Lu, Study of through-thickness residual stress by numerical and experimental techniques, J. Strain Anal. Eng. Des., 33(1998), No. 6, p. 449. doi: 10.1243/0309324981513147
      [23]
      N. Murugan and R. Narayanan, Finite element simulation of residual stresses and their measurement by contour method, Mater. Des., 30(2009), No. 6, p. 2067. doi: 10.1016/j.matdes.2008.08.041
      [24]
      D.A. Tanner and J.S. Robinson, Residual stress prediction and determination in 7010 aluminum alloy forgings, Exp. Mech., 40(2000), No. 1, p. 75. doi: 10.1007/BF02327551
      [25]
      D.A. Tanner and J.S. Robinson, Time transient validation of residual stress prediction models for aluminium alloy quenching, Mater. Sci. Technol., 32(2016), No. 14, p. 1533. doi: 10.1080/02670836.2016.1195122
      [26]
      N. Chobaut, D. Carron, S. Arsène, P. Schloth, and J.M. Drezet, Quench induced residual stress prediction in heat treatable 7xxx aluminium alloy thick plates using Gleeble interrupted quench tests, J. Mater. Process. Technol., 222(2015), p. 373. doi: 10.1016/j.jmatprotec.2015.03.029
      [27]
      J. Liu, Z.Y. Du, J.L. Su, et al., Effect of quenching residual stress on precipitation behaviour of 7085 aluminium alloy, J. Mater. Sci. Technol., 132(2023), p. 154. doi: 10.1016/j.jmst.2022.06.010
      [28]
      Y.X. Cai, L.H. Zhan, Y.Q. Xu, et al., Stress relaxation aging behavior and constitutive modelling of AA7150-T7751 under different temperatures, initial stress levels and pre-strains, Metals, 9(2019), No. 11, art. No. 1215. doi: 10.3390/met9111215
      [29]
      N. Fan, B.Q. Xiong, Z.H. Li, et al., Heat transfer behavior during water spray quenching of 7xxx aluminum alloy plates, J. Therm. Sci. Eng. Appl., 14(2022), No. 4, art. No. 041013. doi: 10.1115/1.4051824
      [30]
      Y.N. Li, Y.A. Zhang, X.W. Li, et al., Effects of heat transfer coefficients on quenching residual stresses in 7055 aluminum alloy, Mater. Sci. Forum, 877(2016), p. 647. doi: 10.4028/www.scientific.net/MSF.877.647

    Catalog


    • /

      返回文章
      返回