留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  586
  • HTML全文浏览量:  231
  • PDF下载量:  28
  • 被引次数: 0
Nursultan E. Sagatov, Tatyana B. Bekker, Yulia G. Vinogradova, Alexey V. Davydov, Ivan V. Podborodnikov,  and Konstantin D. Litasov, Experimental and ab initio study of Ba2Na3(B3O6)2F stability in the pressure range of 0–10 GPa, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1846-1854. https://doi.org/10.1007/s12613-023-2647-0
Cite this article as:
Nursultan E. Sagatov, Tatyana B. Bekker, Yulia G. Vinogradova, Alexey V. Davydov, Ivan V. Podborodnikov,  and Konstantin D. Litasov, Experimental and ab initio study of Ba2Na3(B3O6)2F stability in the pressure range of 0–10 GPa, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1846-1854. https://doi.org/10.1007/s12613-023-2647-0
引用本文 PDF XML SpringerLink
研究论文

Ba2Na3(B3O6)2F在0~10 GPa压力范围内稳定性的实验研究与从头计算法研究





  • 通讯作者:

    Nursultan E.Sagatov    E-mail: sagatinho23@gmail.com

  • 本文对偏酸钡钠Ba2Na3(B3O6)2F (P63/m)在高达10 GPa压力下的稳定性和电子性能进行了数值模拟和实验研究。HSE06杂化泛函的电子结构计算结果表明,Ba2Na3(B3O6)2F的间接带隙为6.289 eV。数值模拟研究结果表明,在300 K温度、大于3.4 GPa的条件下,Ba2Na3(B3O6)2F分解为BaB2O4、NaBO2,和NaF相。随后利用‘Discoverer-1500’ DIA型仪器在压力为3 GPa和6 GPa、温度为1173 K下进行了高压高温实验,证实了Ba2Na3(B3O6)2F在3 GPa下的稳定性,并在6 GPa下分解为BaB2O4、NaBO2和NaF,该结果在能量色散x射线分析和拉曼光谱分析中得到了验证。通过对比实验光谱和计算光谱,确定了Ba2Na3(B3O6)2F相的拉曼光谱。在6 GPa下得到的分解反应产物的实验拉曼光谱表明了一种新的高压改性偏酸钡BaB2O4的来源。
  • Research Article

    Experimental and ab initio study of Ba2Na3(B3O6)2F stability in the pressure range of 0–10 GPa

    + Author Affiliations
    • Both numerical and experimental studies of the stability and electronic properties of barium–sodium metaborate Ba2Na3(B3O6)2F (P63/m) at pressures up to 10 GPa have been carried out. Electronic-structure calculations with HSE06 hybrid functional showed that Ba2Na3(B3O6)2F has an indirect band gap of 6.289 eV. A numerical study revealed the decomposition of Ba2Na3(B3O6)2F into the BaB2O4, NaBO2, and NaF phases above 3.4 GPa at 300 K. Subsequent high-pressure high-temperature experiments performed using ‘Discoverer-1500’ DIA-type apparatus at pressures of 3 and 6 GPa and temperature of 1173 K confirmed the stability of Ba2Na3(B3O6)2F at 3 GPa and its decomposition into BaB2O4, NaBO2, and NaF at 6 GPa, which was verified by energy-dispersive X-ray analysis and Raman spectroscopy. The observed Raman bands of the Ba2Na3(B3O6)2F phase were assigned by comparing the experimental and calculated spectra. The experimental Raman spectra of decomposition reaction products obtained at 6 GPa suggest the origin of a new high-pressure modification of barium metaborate BaB2O4.
    • loading
    • Supplementary Information-10.1007s12613-023-2647-0.rar
      Supplementary Information-10.1007s12613-023-2647-0.docx
    • [1]
      T.B. Bekker, A.E. Kokh, N.G. Kononova, P.P. Fedorov, and S.V. Kuznetsov, Crystal growth and phase equilibria in the BaB2O4–NaF system, Cryst. Growth Des., 9(2009), No. 9, p. 4060. doi: 10.1021/cg9002675
      [2]
      X. Wang, M.J. Xia, and R.K. Li, A promising birefringent crystal Ba2Na3(B3O6)2F, Opt. Mater., 38(2014), p. 6. doi: 10.1016/j.optmat.2014.09.014
      [3]
      H. Zhang, M. Zhang, S.L. Pan, et al., Na3Ba2(B3O6)2F: Next generation of deep-ultraviolet birefringent materials, Cryst. Growth Des., 15(2015), No. 1, p. 523. doi: 10.1021/cg5016912
      [4]
      T.B. Bekker, V.N. Vedenyapin, and A.G. Khamoyan, Birefringence of the new fluoride borates Ba2Na3[B3O6]2F and Ba7(BO3)4−yF2+3y in the Na, Ba, B//O, F quaternary reciprocal system, Mater. Res. Bull., 91(2017), p. 54. doi: 10.1016/j.materresbull.2017.03.024
      [5]
      V.D. Antsygin, A.A. Mamrashev, N.A. Nikolaev, O.I. Potaturkin, T.B. Bekker, and V.P. Solntsev, Optical properties of borate crystals in terahertz region, Opt. Commun., 309(2013), p. 333. doi: 10.1016/j.optcom.2013.08.014
      [6]
      M. Marezio, H.A. Plettinger, and W.H. Zachariasen, The bond lengths in the sodium metaborate structure, Acta Crystallogr., 16(1963), No. 7, p. 594. doi: 10.1107/S0365110X63001596
      [7]
      W. Schneider and G.B. Carpenter, Bond lengths and thermal parameters of potassium metaborate, K3B3O6, Acta Crystallogr. Sect. B, 26(1970), No. 8, p. 1189. doi: 10.1107/S0567740870003849
      [8]
      S. Schmid and W. Schnick, Rubidium metaborate, Rb3B3O6, Acta Crystallogr. C, 60(2004), No. Pt7, p. i69.
      [9]
      M. Schläger and R. Hoppe, Darstellung und kristallstruktur von CsBO2, Z. Anorg. Allg. Chem., 620(1994), No. 11, p. 1867. doi: 10.1002/zaac.19946201106
      [10]
      A.D. Mighell, A. Perloff, and S. Block, The crystal structure of the high temperature form of Barium borate, BaO·B2O3, Acta Crystallogr., 20(1966), No. 6, p. 819. doi: 10.1107/S0365110X66001920
      [11]
      R. Bubnova, S. Volkov, B. Albert, and S. Filatov, Borates—Crystal structures of prospective nonlinear optical materials: High anisotropy of the thermal expansion caused by anharmonic atomic vibrations, Crystals, 7(2017), No. 3, art. No. 93. doi: 10.3390/cryst7030093
      [12]
      J. Liebertz, Struktur und kristallchemie von Ba2M(B3O6)2 mit M = Ca, Cd, Mg, Co and Ni, Z. Kristallogr. Cryst. Mater., 168(1984), No. 1-4, p. 293. doi: 10.1524/zkri.1984.168.14.293
      [13]
      G. Sohr, D.M. Többens, J. Schmedt auf der Günne, and H. Huppertz, HP-CsB5O8: Synthesis and characterization of an outstanding borate exhibiting the simultaneous linkage of all structural units of borates, Chem. Eur. J., 20(2014), No. 51, p. 17059. doi: 10.1002/chem.201404018
      [14]
      H.F. Dong, A.R. Oganov, V.V. Brazhkin, et al., Boron oxides under pressure: Prediction of the hardest oxides, Phys. Rev. B, 98(2018), No. 17, art. No. 174109. doi: 10.1103/PhysRevB.98.174109
      [15]
      D. Vitzthum, K. Wurst, J.M. Pann, P. Brüggeller, M. Seibald, and H. Huppertz, Exploration into the syntheses of gallium- and indiumborates under extreme conditions: M5B12O25(OH): Structure, luminescence, and surprising photocatalytic properties, Angew. Chem. Int. Ed., 57(2018), No. 35, p. 11451. doi: 10.1002/anie.201804083
      [16]
      N.E. Sagatov, T.B. Bekker, I.V. Podborodnikov, and K.D. Litasov, First-principles investigation of pressure-induced structural transformations of barium borates in the BaO–B2O3–BaF2 system in the range of 0–10 GPa, Comput. Mater. Sci., 199(2021), art. No. 110735. doi: 10.1016/j.commatsci.2021.110735
      [17]
      T.B. Bekker, I.V. Podborodnikov, N.E. Sagatov, et al., γ-BaB2O4: High-pressure high-temperature polymorph of barium borate with edge-sharing BO4 tetrahedra, Inorg. Chem., 61(2022), No. 4, p. 2340. doi: 10.1021/acs.inorgchem.1c03760
      [18]
      H. Huppertz and B. von der Eltz, Multianvil high-pressure synthesis of Dy4B6O15: The first oxoborate with edge-sharing BO4 tetrahedra, J. Am. Chem. Soc., 124(2002), No. 32, p. 9376. doi: 10.1021/ja017691z
      [19]
      G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169. doi: 10.1103/PhysRevB.54.11169
      [20]
      G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59(1999), No. 3, p. 1758. doi: 10.1103/PhysRevB.59.1758
      [21]
      J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
      [22]
      H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188. doi: 10.1103/PhysRevB.13.5188
      [23]
      A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys., 125(2006), No. 22, art. No. 224106. doi: 10.1063/1.2404663
      [24]
      V. Wang, N. Xu, J.C. Liu, G. Tang, and W.T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun., 267(2021), art. No. 108033. doi: 10.1016/j.cpc.2021.108033
      [25]
      F.W. Aquino, R. Shinde, and B.M. Wong, Fractional occupation numbers and self-interaction correction-scaling methods with the Fermi-Löwdin orbital self-interaction correction approach, J. Comput. Chem., 41(2020), No. 12, p. 1200. doi: 10.1002/jcc.26168
      [26]
      B.G. Janesko, Replacing hybrid density functional theory: Motivation and recent advances, Chem. Soc. Rev., 50(2021), No. 15, p. 8470. doi: 10.1039/D0CS01074J
      [27]
      R. Shinde, S.S.R.K.C. Yamijala, and B.M. Wong, Improved band gaps and structural properties from Wannier–Fermi–Löwdin self-interaction corrections for periodic systems, J. Phys.: Condens. Matter, 33(2021), No. 11, art. No. 115501. doi: 10.1088/1361-648X/abc407
      [28]
      A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater., 108(2015), p. 1. doi: 10.1016/j.scriptamat.2015.07.021
      [29]
      A. Fonari and S. Stauffer, Vasp_raman.py, 2013 [2016-09-21]. https://github.com/raman-sc.
      [30]
      Q.J. Zheng, VaspVib2XSF, 2020 [2022-11-08]. https://github.com/QijingZheng/VaspVib2XSF.
      [31]
      A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling Simul. Mater. Sci. Eng., 18(2010), No. 1, art. No. 015012. doi: 10.1088/0965-0393/18/1/015012
      [32]
      J.M. Leger, J. Haines, A. Atouf, O. Schulte, and S. Hull, High-pressure X-ray- and neutron-diffraction studies of BaF2: An example of a coordination number of 11 in AX2 compounds, Phys. Rev. B, 52(1995), No. 18, p. 13247. doi: 10.1103/PhysRevB.52.13247
      [33]
      V.T. Deshpande, Thermal expansion of sodium fluoride and sodium bromide, Acta Crystallogr., 14(1961), No. 7, art. No. 794. doi: 10.1107/S0365110X61002357
      [34]
      S.M. Fang, The crystal structure of sodium metaborate Na3(B3O6), Z. Kristallogr. Cryst. Mater., 99(1938), No. 1-6, p. 1. doi: 10.1524/zkri.1938.99.1.1
      [35]
      F. Mouhat and F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, 90(2014), No. 22, art. No. 224104. doi: 10.1103/PhysRevB.90.224104
      [36]
      T.B. Bekker, T.M. Inerbaev, A.P. Yelisseyev, et al., Experimental and ab initio studies of intrinsic defects in “antizeolite” borates with a Ba12(BO3)$ {}_6^{6+} $ framework and their influence on properties, Inorg. Chem., 59(2020), No. 18, p. 13598. doi: 10.1021/acs.inorgchem.0c01966
      [37]
      C. Wu, J.L. Song, L.H. Li, M.G. Humphrey, and C. Zhang, Alkali metal-alkaline earth metal borate crystal LiBa3(OH)(B9O16)[B(OH)4]as a new deep-UV nonlinear optical material, J. Mater. Chem. C, 4(2016), No. 35, p. 8189. doi: 10.1039/C6TC02306A
      [38]
      A. Jain, S.P. Ong, G. Hautier, et al., Commentary: The materials project: A materials genome approach to accelerating materials innovation, APL Mater., 1(2013), No. 1, art. No. 011002. doi: 10.1063/1.4812323
      [39]
      S.M. Wan, X.A. Zhang, S.J. Zhao, et al., Growth units and growth habit of α-BaB2O4 crystal, J. Appl. Crystallogr., 40(2007), No. 4, p. 725. doi: 10.1107/S0021889807024995
      [40]
      X.S. Lv, Y.L. Sun, J. Han, et al., Growth and Raman spectrum of Ba2Mg(B3O6)2 crystal, J. Cryst. Growth, 363(2013), p. 220. doi: 10.1016/j.jcrysgro.2012.10.049
      [41]
      P. Ney, M.D. Fontana, A. Maillard, and K. Polgár, Assignment of the Raman lines in single crystal barium metaborate, J. Phys.: Condens. Matter, 10(1998), No. 3, p. 673. doi: 10.1088/0953-8984/10/3/018
      [42]
      Y.K. Voronko, A.A. Sobol, and V.E. Shukshin, Structure of boron–oxygen groups in crystalline, molten, and glassy alkali-metal and alkaline-earth metaborates, Inorg. Mater., 48(2012), No. 7, p. 732. doi: 10.1134/S0020168512060210

    Catalog


    • /

      返回文章
      返回