留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 11
Nov.  2023

图(11)

数据统计

分享

计量
  • 文章访问数:  1148
  • HTML全文浏览量:  470
  • PDF下载量:  166
  • 被引次数: 0
Xun Zhang, Yakang Li, Wei Zhao, Jiaxin Guo, Pengfei Yin, and Tao Ling, Technical factors affecting the performance of anion exchange membrane water electrolyzer, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2259-2269. https://doi.org/10.1007/s12613-023-2648-z
Cite this article as:
Xun Zhang, Yakang Li, Wei Zhao, Jiaxin Guo, Pengfei Yin, and Tao Ling, Technical factors affecting the performance of anion exchange membrane water electrolyzer, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2259-2269. https://doi.org/10.1007/s12613-023-2648-z
引用本文 PDF XML SpringerLink
研究论文

阴离子交换膜电解槽中各项技术因素对电解水性能的影响

文章亮点

  • (1) 全面地分析了AEM电解槽的电化学活性、电化学阻抗谱和活性位点数目。
  • (2) 系统地探究了各项技术因素(催化剂制备、膜电极组装和测试条件)对AEM电解性能的影响。
  • (3) 揭示了各项技术因素影响AEM电解槽性能的潜在机制。
  • 阴离子交换膜(AEM)电解槽是一种很有前途的“绿氢”制取技术。然而,AEM电解仍处于起步阶段,AEM电解槽的性能远落后于碱性和质子交换膜电解槽。AEM电解槽中不可逆电压损失主要与电极反应动力学以及电解过程中电子、离子和气相产物的输运有关。因此,突破AEM电解槽的技术壁垒至关重要。本文通过分析AEM电解槽的电化学活性、电化学阻抗谱和活性位点数目,探究了AEM电解槽各项技术因素对电解水制氢性能的影响。这些因素涵盖催化层制备(如催化剂、炭黑和阴离子离聚物负载量)、膜电极组装和测试条件(如电解液中的KOH浓度、电解液进料模式和操作温度)。此外,还揭示了各项技术因素影响AEM电解槽性能的潜在机制,为开发高效、稳定的AEM电解体系提供了理论基础和实验借鉴。
  • Research Article

    Technical factors affecting the performance of anion exchange membrane water electrolyzer

    + Author Affiliations
    • Anion exchange membrane (AEM) electrolysis is a promising membrane-based green hydrogen production technology. However, AEM electrolysis still remains in its infancy, and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers. Therefore, breaking through the technical barriers of AEM electrolyzers is critical. On the basis of the analysis of the electrochemical performance tested in a single cell, electrochemical impedance spectroscopy, and the number of active sites, we evaluated the main technical factors that affect AEM electrolyzers. These factors included catalyst layer manufacturing (e.g., catalyst, carbon black, and anionic ionomer) loadings, membrane electrode assembly, and testing conditions (e.g., the KOH concentration in the electrolyte, electrolyte feeding mode, and operating temperature). The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed. The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons, ions, and gas-phase products involved in electrolysis. Based on the study results, the performance and stability of AEM electrolyzers were significantly improved.
    • loading
    • Supplementary Information-10.1007s12613-023-2648-z.docx
    • [1]
      Y.X. Yang, P. Li, X.B. Zheng, et al., Anion-exchange membrane water electrolyzers and fuel cells, Chem. Soc. Rev., 51(2022), No. 23, p. 9620. doi: 10.1039/D2CS00038E
      [2]
      X. Liu, G.Y. Liu, J.L. Xue, X.D. Wang, and Q.F. Li, Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1073. doi: 10.1007/s12613-022-2449-9
      [3]
      J.X. Guo, Y. Zheng, Z.P. Hu, et al., Direct seawater electrolysis by adjusting the local reaction environment of a catalyst, Nat. Energy, 8(2023), No. 3, p. 264.
      [4]
      W.M. Tong, M. Forster, F. Dionigi, et al., Electrolysis of low-grade and saline surface water, Nat. Energy, 5(2020), No. 5, p. 367. doi: 10.1038/s41560-020-0550-8
      [5]
      N.Y. Du, C. Roy, R. Peach, M. Turnbull, S. Thiele, and C. Bock, Anion-exchange membrane water electrolyzers, Chem. Rev., 122(2022), No. 13, p. 11830. doi: 10.1021/acs.chemrev.1c00854
      [6]
      S.S. Kumar and V. Himabindu, Hydrogen production by PEM water electrolysis – A review, Mater. Sci. Energy Technol., 2(2019), No. 3, p. 442.
      [7]
      H. Nguyen, C. Klose, L. Metzler, S. Vierrath, and M. Breitwieser, Fully hydrocarbon membrane electrode assemblies for proton exchange membrane fuel cells and electrolyzers: An engineering perspective, Adv. Energy Mater., 12(2022), No. 12, art. No. 2103559. doi: 10.1002/aenm.202103559
      [8]
      Q.C. Xu, L.Y. Zhang, J.H. Zhang, et al., Anion exchange membrane water electrolyzer: Electrode design, lab-scaled testing system and performance evaluation, EnergyChem, 4(2022), No. 5, art. No. 100087. doi: 10.1016/j.enchem.2022.100087
      [9]
      M. Carmo, D.L. Fritz, J. Mergel, and D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 38(2013), No. 12, p. 4901. doi: 10.1016/j.ijhydene.2013.01.151
      [10]
      R.R.R. Sulaiman, W.Y. Wong, and K.S. Loh, Recent developments on transition metal-based electrocatalysts for application in anion exchange membrane water electrolysis, Int. J. Energy Res., 46(2022), No. 3, p. 2241. doi: 10.1002/er.7380
      [11]
      L.H. Liu, N. Li, J.R. Han, K.L. Yao, and H.Y. Liang, Multicomponent transition metal phosphide for oxygen evolution, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 503. doi: 10.1007/s12613-021-2352-9
      [12]
      D.G. Li, A.R. Motz, C. Bae, et al., Durability of anion exchange membrane water electrolyzers, Energy Environ. Sci., 14(2021), No. 6, p. 3393. doi: 10.1039/D0EE04086J
      [13]
      J.E. Park, S.Y. Kang, S.H. Oh, et al., High-performance anion-exchange membrane water electrolysis, Electrochim. Acta, 295(2019), p. 99. doi: 10.1016/j.electacta.2018.10.143
      [14]
      I. Vincent, E.C. Lee, and H.M. Kim, Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production, Sci. Rep., 11(2021), No. 1, art. No. 293. doi: 10.1038/s41598-020-80683-6
      [15]
      C.Q. Li and J.B. Baek, The promise of hydrogen production from alkaline anion exchange membrane electrolyzers, Nano Energy, 87(2021), art. No. 106162. doi: 10.1016/j.nanoen.2021.106162
      [16]
      S.Y. Kang, J.E. Park, G.Y. Jang, et al., High-performance and durable water electrolysis using a highly conductive and stable anion-exchange membrane, Int. J. Hydrogen Energy, 47(2022), No. 15, p. 9115. doi: 10.1016/j.ijhydene.2022.01.002
      [17]
      D.G. Li, E.J. Park, W.L. Zhu, et al., Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers, Nat. Energy, 5(2020), No. 5, p. 378. doi: 10.1038/s41560-020-0577-x
      [18]
      Y.M. Dong, K. He, L. Yin, and A.M. Zhang, A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties, Nanotechnology, 18(2007), No. 43, art. No. 435602. doi: 10.1088/0957-4484/18/43/435602
      [19]
      Z. Li, Y. Zhang, Y. Feng, et al., Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions, Adv. Funct. Mater., 29(2019), No. 36, art. No. 1903444. doi: 10.1002/adfm.201903444
      [20]
      A.J. Esswein, M.J. McMurdo, P.N. Ross, A.T. Bell, and T.D. Tilley, Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis, J. Phys. Chem. C, 113(2009), No. 33, p. 15068. doi: 10.1021/jp904022e
      [21]
      P. Lettenmeier, S. Kolb, N. Sata, et al., Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers, Energy Environ. Sci., 10(2017), No. 12, p. 2521. doi: 10.1039/C7EE01240C
      [22]
      H. Liu, H.B. Tao, and B. Liu, Kinetic insights of proton exchange membrane water electrolyzer obtained by operando characterization methods, J. Phys. Chem. Lett., 13(2022), No. 28, p. 6520. doi: 10.1021/acs.jpclett.2c01341
      [23]
      B. Han, S.M. Steen, J.K. Mo, and F.Y. Zhang, Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy, Int. J. Hydrogen Energy, 40(2015), No. 22, p. 7006. doi: 10.1016/j.ijhydene.2015.03.164
      [24]
      R.A. Krivina, G.A. Lindquist, S.R. Beaudoin, et al., Anode catalysts in anion-exchange-membrane electrolysis without supporting electrolyte: Conductivity, dynamics, and ionomer degradation, Adv. Mater., 34(2022), No. 35, art. No. 2203033. doi: 10.1002/adma.202203033
      [25]
      S.M. Alia, M.A. Ha, C. Ngo, G.C. Anderson, S. Ghoshal, and S. Pylypenko, Platinum–nickel nanowires with improved hydrogen evolution performance in anion exchange membrane-based electrolysis, ACS Catal., 10(2020), No. 17, p. 9953. doi: 10.1021/acscatal.0c01568
      [26]
      K. Karthick, S. Anantharaj, P.E. Karthik, B. Subramanian, and S. Kundu, Self-assembled molecular hybrids of CoS-DNA for enhanced water oxidation with low cobalt content, Inorg. Chem., 56(2017), No. 11, p. 6734. doi: 10.1021/acs.inorgchem.7b00855
      [27]
      J.J. Liu, Z.Y. Kang, D.G. Li, et al., Elucidating the role of hydroxide electrolyte on anion-exchange-membrane water electrolyzer performance, J. Electrochem. Soc., 168(2021), No. 5, art. No. 054522. doi: 10.1149/1945-7111/ac0019
      [28]
      S. Siracusano, S. Trocino, N. Briguglio, V. Baglio, and A.S. Aricò, Electrochemical impedance spectroscopy as a diagnostic tool in polymer electrolyte membrane electrolysis, Materials, 11(2018), No. 8, art. No. 1368. doi: 10.3390/ma11081368
      [29]
      I. Dedigama, D.J.L. Brett, T.J. Mason, J. Millichamp, P.R. Shearing, and K.E. Ayers, An electrochemical impedance spectroscopy study and two phase flow analysis of the anode of polymer electrolyte membrane water electrolyser, ECS Trans., 68(2015), No. 3, p. 117. doi: 10.1149/06803.0117ecst
      [30]
      M. Bernt, A. Siebel, and H.A. Gasteiger, Analysis of voltage losses in PEM water electrolyzers with low platinum group metal loadings, J. Electrochem. Soc., 165(2018), No. 5, p. F305. doi: 10.1149/2.0641805jes
      [31]
      T.Y. Ma, S. Dai, M. Jaroniec, and S.Z. Qiao, Metal-organic framework derived hybrid Co3O4–carbon porous nanowire arrays as reversible oxygen evolution electrodes, J. Am. Chem. Soc., 136(2014), No. 39, p. 13925. doi: 10.1021/ja5082553
      [32]
      Z.Y. Li, K.H. Ye, Q.S. Zhong, C.J. Zhang, S.T. Shi, and C.W. Xu, Au–Co3O4/C as an efficient electrocatalyst for the oxygen evolution reaction, ChemPlusChem, 79(2014), No. 11, p. 1569. doi: 10.1002/cplu.201402136
      [33]
      P.Q. Chen, Y.X. Tai, H. Wu, Y.F. Gao, J.Y. Chen, and J.G. Cheng, Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1627. doi: 10.1007/s12613-021-2265-7
      [34]
      J.O. Majasan, J.I.S. Cho, M. Maier, I. Dedigama, P.R. Shearing, and D.J.L. Brett, Effect of anode flow channel depth on the performance of polymer electrolyte membrane water electrolyser, ECS Trans., 85(2018), No. 13, p. 1593. doi: 10.1149/08513.1593ecst
      [35]
      E. Cossar, A.O. Barnett, F. Seland, R. Safari, G.A. Botton, and E.A. Baranova, Ionomer content optimization in nickel-iron-based anodes with and without ceria for anion exchange membrane water electrolysis, J. Power Sources, 514(2021), art. No. 230563. doi: 10.1016/j.jpowsour.2021.230563
      [36]
      E. Cossar, F. Murphy, J. Walia, A. Weck, and E.A. Baranova, Role of ionomers in anion exchange membrane water electrolysis: Is aemion the answer for nickel-based anodes? ACS Appl. Energy Mater., 5(2022), No. 8, p. 9938. doi: 10.1021/acsaem.2c01604
      [37]
      S. Koch, P.A. Heizmann, S.K. Kilian, et al., The effect of ionomer content in catalyst layers in anion-exchange membrane water electrolyzers prepared with reinforced membranes (Aemion+TM), J. Mater. Chem. A, 9(2021), No. 28, p. 15744. doi: 10.1039/D1TA01861B
      [38]
      E. Leonard, A.D. Shum, N. Danilovic, et al., Interfacial analysis of a PEM electrolyzer using X-ray computed tomography, Sustainable Energy Fuels, 4(2020), No. 2, p. 921. doi: 10.1039/C9SE00364A
      [39]
      A. Kiessling, J.C. Fornaciari, G. Anderson, et al., Influence of supporting electrolyte on hydroxide exchange membrane water electrolysis performance: Anolyte, J. Electrochem. Soc., 168(2021), No. 8, art. No. 084512. doi: 10.1149/1945-7111/ac1dcd
      [40]
      F. Razmjooei, R. Reißner, A.S. Gago, and A. Ansar, Highly active binder free plasma sprayed non-noble metal electrodes for anion exchange membrane electrolysis at different reduced KOH concentrations, ECS Trans., 92(2019), No. 8, p. 689. doi: 10.1149/09208.0689ecst
      [41]
      J.K. Lee, C. Lee, and A. Bazylak, Pore network modelling to enhance liquid water transport through porous transport layers for polymer electrolyte membrane electrolyzers, J. Power Sources, 437(2019), art. No. 226910. doi: 10.1016/j.jpowsour.2019.226910
      [42]
      D.K. Zhang and K. Zeng, Evaluating the behavior of electrolytic gas bubbles and their effect on the cell voltage in alkaline water electrolysis, Ind. Eng. Chem. Res., 51(2012), No. 42, p. 13825. doi: 10.1021/ie301029e
      [43]
      M.K. Cho, H.Y. Park, H.J. Lee, et al., Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content, J. Power Sources, 382(2018), p. 22. doi: 10.1016/j.jpowsour.2018.02.025
      [44]
      D.G. Li, I. Matanovic, A.S. Lee, et al., Phenyl oxidation impacts the durability of alkaline membrane water electrolyzer, ACS Appl. Mater. Interfaces, 11(2019), No. 10, p. 9696. doi: 10.1021/acsami.9b00711
      [45]
      A.D. Mohanty, S.E. Tignor, J.A. Krause, Y.K. Choe, and C. Bae, Systematic alkaline stability study of polymer backbones for anion exchange membrane applications, Macromolecules, 49(2016), No. 9, p. 3361. doi: 10.1021/acs.macromol.5b02550
      [46]
      S. Maurya, A.S. Lee, D.G. Li, et al., On the origin of permanent performance loss of anion exchange membrane fuel cells: Electrochemical oxidation of phenyl group, J. Power Sources, 436(2019), art. No. 226866. doi: 10.1016/j.jpowsour.2019.226866
      [47]
      X. Hu, Y.D. Huang, L. Liu, et al., Piperidinium functionalized aryl ether-free polyaromatics as anion exchange membrane for water electrolysers: Performance and durability, J. Membr. Sci., 621(2021), art. No. 118964. doi: 10.1016/j.memsci.2020.118964

    Catalog


    • /

      返回文章
      返回