留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(13)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  429
  • HTML全文浏览量:  157
  • PDF下载量:  53
  • 被引次数: 0
Chaoqun Chu, Shunchuan Wu, Chaojun Zhang, and Yongle Zhang, Microscopic damage evolution of anisotropic rocks under indirect tensile conditions: Insights from acoustic emission and digital image correlation techniques, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1680-1691. https://doi.org/10.1007/s12613-023-2649-y
Cite this article as:
Chaoqun Chu, Shunchuan Wu, Chaojun Zhang, and Yongle Zhang, Microscopic damage evolution of anisotropic rocks under indirect tensile conditions: Insights from acoustic emission and digital image correlation techniques, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1680-1691. https://doi.org/10.1007/s12613-023-2649-y
引用本文 PDF XML SpringerLink
研究论文

间接拉伸条件下各向异性岩石的微观损伤演化:基于声发射和数字图像相关技术的见解


  • 通讯作者:

    吴顺川    E-mail: wushunchuan@ustb.edu.cn

文章亮点

  • (1) 揭示了页岩力学行为和声发射特征的结构依赖性
  • (2) 通过3D–DIC技术监测了各向异性页岩的裂纹扩展
  • (3) 使用电镜扫描观察发现了间接拉伸条件下的页岩三种破裂模式
  • 岩石层理结构引起的各向异性通常表现在岩石的力学行为和破裂模式中。本研究对七组页岩圆盘试样进行巴西试验,试样具有不同的层理角度。采用声发射(AE)和数字图像相关(DIC)技术监测试样的实验室原位破坏过程。此外,通过扫描电子显微镜(SEM)观察受损试样的裂纹形态。结果揭示了页岩的拉伸力学行为与结构依赖性。在试验的初期,页岩圆盘在不同位置和试验时间下呈现压缩现象。随着层理角度的增加,压缩区域的位置向下移动并逐渐消失。宏观破裂的位置特征通过AE事件定位结果得到很好的描述,而主导频率分布与层理角度相关,同时,发现b值存在应力依赖性。层间裂纹转向角和穿过层理的裂纹数量随着层理角度的增加而增加,表明裂纹发育之间存在竞争。SEM结果揭示试样的破裂模式可以分为三类:沿层理的拉伸破裂与基质的剪切破裂,沿层理的剪切破裂与基质的拉伸破裂混合阶梯破裂模式,以及沿多个层理的剪切破裂与基质的拉伸破裂混合破裂模式。
  • Research Article

    Microscopic damage evolution of anisotropic rocks under indirect tensile conditions: Insights from acoustic emission and digital image correlation techniques

    + Author Affiliations
    • The anisotropy induced by rock bedding structures is usually manifested in the mechanical behaviors and failure modes of rocks. Brazilian tests are conducted for seven groups of shale specimens featuring different bedding angles. Acoustic emission (AE) and digital image correlation (DIC) technologies are used to monitor the in-situ failure of the specimens. Furthermore, the crack morphology of damaged samples is observed through scanning electron microscopy (SEM). Results reveal the structural dependence on the tensile mechanical behavior of shales. The shale disk exhibits compression in the early stage of the experiment with varying locations and durations. The location of the compression area moves downward and gradually disappears when the bedding angle increases. The macroscopic failure is well characterized by AE event location results, and the dominant frequency distribution is related to the bedding angle. The b-value is found to be stress-dependent. The crack turning angle between layers and the number of cracks crossing the bedding both increase with the bedding angle, indicating competition between crack propagations. SEM results revealed that the failure modes of the samples can be classified into three types: tensile failure along beddings with shear failure of the matrix, ladder shear failure along beddings with tensile failure of the matrix, and shear failure along multiple beddings with tensile failure of the matrix.
    • loading
    • [1]
      C.D. Martin, S. Giger, and G.W. Lanyon, Behaviour of weak shales in underground environments, Rock Mech. Rock Eng., 49(2016), No. 2, p. 673. doi: 10.1007/s00603-015-0860-5
      [2]
      C.M. Sayers, The effect of anisotropy on the Young’s moduli and Poisson’s ratios of shales, Geophys. Prospect., 61(2013), No. 2, p. 416. doi: 10.1111/j.1365-2478.2012.01130.x
      [3]
      G. Khanlari, B. Rafiei, and Y. Abdilor, An experimental investigation of the Brazilian tensile strength and failure patterns of laminated sandstones, Rock Mech. Rock Eng., 48(2015), No. 2, p. 843. doi: 10.1007/s00603-014-0576-y
      [4]
      C.Q. Chu, S.C. Wu, S.H. Zhang, P. Guo, and Z. Min, Mechanical behavior anisotropy and fracture characteristics ofbedded sandstone, J. Cent. South Univ., 51(2020), No. 8, p. 2232.
      [5]
      T.Z. Zhang, H.G. Ji, X.B. Su, et al., Evaluation and classification of rock heterogeneity based on acoustic emission detection, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2117. doi: 10.1007/s12613-021-2381-4
      [6]
      J.W. Cho, H. Kim, S. Jeon, and K.B. Min, Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist, Int. J. Rock Mech. Min. Sci., 50(2012), p. 158. doi: 10.1016/j.ijrmms.2011.12.004
      [7]
      S.Q. Yang, P.F. Yin, B. Li, and D.S. Yang, Behavior of transversely isotropic shale observed in triaxial tests and Brazilian disc tests, Int. J. Rock Mech. Min. Sci., 133(2020), art. No. 104435. doi: 10.1016/j.ijrmms.2020.104435
      [8]
      S. Lozovyi and A. Bauer, From static to dynamic stiffness of shales: Frequency and stress dependence, Rock Mech. Rock Eng., 52(2019), No. 12, p. 5085. doi: 10.1007/s00603-019-01934-1
      [9]
      E. Hoek, Fracture of anisotropic rock, J. S. Afr. Inst. Min. Metall., 64(1964), No. 10, p. 510.
      [10]
      H. Niandou, J.F. Shao, J.P. Henry, and D. Fourmaintraux, Laboratory investigation of the mechanical behaviour of Tournemire shale, Int. J. Rock Mech. Min. Sci., 34(1997), No. 1, p. 3. doi: 10.1016/S1365-1609(97)80029-9
      [11]
      Q. Liu, B. Liang, W.J. Sun, and H. Zhao, Experimental study on the difference of shale mechanical properties, Adv. Civ. Eng., 2021(2021), p. 1.
      [12]
      N.D.J. Simpson, A. Stroisz, A. Bauer, A. Vervoort, and R.M. Holt, Failure mechanics of anisotropic shale during Brazilian tests, [in] Proceedings of the 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, 2014.
      [13]
      Z.F. Jin, W.X. Li, C.R. Jin, J. Hambleton, and G. Cusatis, Anisotropic elastic, strength, and fracture properties of Marcellus shale, Int. J. Rock Mech. Min. Sci., 109(2018), p. 124. doi: 10.1016/j.ijrmms.2018.06.009
      [14]
      Y.T. Gao, T.H. Wu, and Y. Zhou, Application and prospective of 3D printing in rock mechanics: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 1. doi: 10.1007/s12613-020-2119-8
      [15]
      G.W. Xu, C. He, Z.Q. Chen, and A. Su, Transverse isotropy of phyllite under Brazilian tests: Laboratory testing and numerical simulations, Rock Mech. Rock Eng., 51(2018), No. 4, p. 1111. doi: 10.1007/s00603-017-1393-x
      [16]
      Z. Aliabadian, G. Zhao, and A. Russell, Failure, crack initiation and the tensile strength of transversely isotropic rock using the Brazilian test, Int. J. Rock Mech. Min. Sci., 122(2019), art. No. 104073. doi: 10.1016/j.ijrmms.2019.104073
      [17]
      X.M. Yin, X. Zhang, Y.J. Lei, and L.N. Wang, Effect of loading direction on the critical characteristic strength and energy evolution of quartz mica schist and microscale mechanisms, Bull. Eng. Geol. Environ., 80(2021), No. 11, p. 8693. doi: 10.1007/s10064-021-02455-4
      [18]
      P. Li, M.F. Cai, P.T. Wang, Q.F. Guo, S.J. Miao, and F.H. Ren, Mechanical properties and energy evolution of jointed rock specimens containing an opening under uniaxial loading, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1875. doi: 10.1007/s12613-020-2237-3
      [19]
      M. Sakha, M. Nejati, A. Aminzadeh, S. Ghouli, M.O. Saar, and T. Driesner, On reliable prediction of fracture path in anisotropic rocks, Procedia Struct. Integr., 39(2022), p. 792. doi: 10.1016/j.prostr.2022.03.152
      [20]
      L. Yang, M. Sharafisafa, and L.M. Shen, On the fracture mechanism of rock-like materials with interbedded hard-soft layers under Brazilian tests, Theor. Appl. Fract. Mech., 116(2021), art. No. 103102. doi: 10.1016/j.tafmec.2021.103102
      [21]
      P. Xu, R.S. Yang, J.J. Zuo, et al., Research progress of the fundamental theory and technology of rock blasting, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 705. doi: 10.1007/s12613-022-2464-x
      [22]
      Y.Y. Meng, H.W. Jing, X.W. Liu, Q. Yin, L. Zhang, and H.X. Liu, Experimental and numerical investigation on the effect of bedding plane properties on fracture behaviour of sandy mudstone, Theor. Appl. Fract. Mech., 114(2021), art. No. 102989. doi: 10.1016/j.tafmec.2021.102989
      [23]
      C.D. Ding, Y. Zhang, D.W. Hu, H. Zhou, and J.F. Shao, Foliation effects on mechanical and failure characteristics of slate in 3D space under Brazilian test conditions, Rock Mech. Rock Eng., 53(2020), No. 9, p. 3919. doi: 10.1007/s00603-020-02146-8
      [24]
      S. Na, W. Sun, M.D. Ingraham, and H. Yoon, Effects of spatial heterogeneity and material anisotropy on the fracture pattern and macroscopic effective toughness of Mancos Shale in Brazilian tests, J. Geophys. Res., 122(2017), No. 8, p. 6202. doi: 10.1002/2016JB013374
      [25]
      H. Wang, Y. Li, S.G. Cao, et al., Fracture toughness analysis of HCCD specimens of Longmaxi shale subjected to mixed mode I-II loading, Eng. Fract. Mech., 239(2020), art. No. 107299. doi: 10.1016/j.engfracmech.2020.107299
      [26]
      X.W. Yang, X.P. Zhang, Q. Zhang, C.D. Li, and D.J. Wang, Study on the mechanisms of crack turning in bedded rock, Eng. Fract. Mech., 247(2021), art. No. 107630. doi: 10.1016/j.engfracmech.2021.107630
      [27]
      A. Vervoort, K.B. Min, H. Konietzky, et al., Failure of transversely isotropic rock under Brazilian test conditions, Int. J. Rock Mech. Min. Sci., 70(2014), p. 343. doi: 10.1016/j.ijrmms.2014.04.006
      [28]
      C.B. Li, B.B. Zou, H.W. Zhou, and J. Wang, Experimental investigation on failure behaviors and mechanism of an anisotropic shale in direct tension, Geomech. Geophys. Geo-Energy Geo-Resour., 7(2021), No. 4, art. No. 98. doi: 10.1007/s40948-021-00294-x
      [29]
      G. Feng, Y. Kang, X.C. Wang, Y.Q. Hu, and X.H. Li, Investigation on the failure characteristics and fracture classification of shale under Brazilian test conditions, Rock Mech. Rock Eng., 53(2020), No. 7, p. 3325. doi: 10.1007/s00603-020-02110-6
      [30]
      N. Wu, J.Y. Fu, Z.D. Zhu, and B. Sun, Experimental study on the dynamic behavior of the Brazilian disc sample of rock material, Int. J. Rock Mech. Min. Sci., 130(2020), art. No. 104326. doi: 10.1016/j.ijrmms.2020.104326
      [31]
      Z.Y. Han, D.Y. Li, and X.B. Li, Experimental study on the dynamic behavior of sandstone with coplanar elliptical flaws from macro, meso, and micro viewpoints, Theor. Appl. Fract. Mech., 120(2022), art. No. 103400. doi: 10.1016/j.tafmec.2022.103400
      [32]
      R. Chen and K.W. Xia, Dynamic tensile failure of rocks under static pre-tension, Int. J. Rock Mech. Min. Sci., 80(2015), p. 12. doi: 10.1016/j.ijrmms.2015.09.003
      [33]
      B.X. Huang, L.H. Li, Y.F. Tan, R.L. Hu, and X. Li, Investigating the meso-mechanical anisotropy and fracture surface roughness of continental shale, J. Geophys. Res., 125(2020), No. 8, art. No. e2019JB017828.
      [34]
      B. Debecker and A. Vervoort, Experimental observation of fracture patterns in layered slate, Int. J. Fract., 159(2009), No. 1, p. 51. doi: 10.1007/s10704-009-9382-z
      [35]
      J. Wang, L.Z. Xie, H.P. Xie, et al., Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests, J. Nat. Gas Sci. Eng., 36(2016), p. 1120. doi: 10.1016/j.jngse.2016.03.046
      [36]
      Y. Li, L. Xue, and X.W. Wu, Study on acoustic emission and X-ray computed-tomography characteristics of shale samples under uniaxial compression tests, Environ. Earth Sci., 78(2019), No. 5, p. 1.
      [37]
      P.F. Yin and S.Q. Yang, Experimental investigation of the strength and failure behavior of layered sandstone under uniaxial compression and Brazilian testing, Acta Geophys., 66(2018), No. 4, p. 585. doi: 10.1007/s11600-018-0152-z
      [38]
      V. Kramarov, P.N. Parrikar, and M. Mokhtari, Evaluation of fracture toughness of sandstone and shale using digital image correlation, Rock Mech. Rock Eng., 53(2020), No. 9, p. 4231. doi: 10.1007/s00603-020-02171-7
      [39]
      M. Sharafisafa and L.M. Shen, Experimental investigation of dynamic fracture patterns of 3D printed rock-like material under impact with digital image correlation, Rock Mech. Rock Eng., 53(2020), No. 8, p. 3589. doi: 10.1007/s00603-020-02115-1
      [40]
      S.Q. Yang, P.F. Yin, and Y.H. Huang, Experiment and discrete element modelling on strength, deformation and failure behaviour of shale under Brazilian compression, Rock Mech. Rock Eng., 52(2019), No. 11, p. 4339. doi: 10.1007/s00603-019-01847-z
      [41]
      J. Li, J. Zhao, H.C. Wang, K. Liu, and Q.B. Zhang, Fracturing behaviours and AE signatures of anisotropic coal in dynamic Brazilian tests, Eng. Fract. Mech., 252(2021), art. No. 107817. doi: 10.1016/j.engfracmech.2021.107817
      [42]
      R.J. Wu, H.B. Li, and D.P. Wang, Full-field deformation measurements from Brazilian disc tests on anisotropic phyllite under impact loads, Int. J. Impact Eng., 149(2021), art. No. 103790. doi: 10.1016/j.ijimpeng.2020.103790
      [43]
      K.H. Li, Z.Y. Yin, D.Y. Han, X. Fan, R.H. Cao, and H. Lin, Size effect and anisotropy in a transversely isotropic rock under compressive conditions, Rock Mech. Rock Eng., 54(2021), No. 9, p. 4639. doi: 10.1007/s00603-021-02558-0
      [44]
      K.H. Li, Y. Cheng, Z.Y. Yin, D.Y. Han, and J.J. Meng, Size effects in a transversely isotropic rock under Brazilian tests: Laboratory testing, Rock Mech. Rock Eng., 53(2020), No. 6, p. 2623. doi: 10.1007/s00603-020-02058-7
      [45]
      D.Q. Dan and H. Konietzky, Numerical simulations and interpretations of Brazilian tensile tests on transversely isotropic rocks, Int. J. Rock Mech. Min. Sci., 71(2014), p. 53. doi: 10.1016/j.ijrmms.2014.06.015
      [46]
      D.W. Hobbs, The tensile strength of rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1(1964), No. 3, p. 385. doi: 10.1016/0148-9062(64)90005-1
      [47]
      K. Barron, Brittle fracture initiation in and ultimate failure of rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 8(1971), No. 6, p. 565. doi: 10.1016/0148-9062(71)90027-1
      [48]
      G. Barla and N. Innaurato, Indirect tensile testing of anisotropic rocks, Rock Mech., 5(1973), No. 4, p. 215. doi: 10.1007/BF01301795
      [49]
      D.Y. Li and L.N.Y. Wong, The Brazilian disc test for rock mechanics applications: Review and new insights, Rock Mech. Rock Eng., 46(2013), No. 2, p. 269. doi: 10.1007/s00603-012-0257-7
      [50]
      S.H. Zhang, S.C. Wu, G. Zhang, P. Guo, and C.Q. Chu, Three-dimensional evolution of damage in sandstone Brazilian discs by the concurrent use of active and passive ultrasonic techniques, Acta Geotech., 15(2020), No. 2, p. 393. doi: 10.1007/s11440-018-0737-3
      [51]
      Z.T. Bieniawski and I. Hawkes, Suggested methods for determining tensile strength of rock materials, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15(1978), No. 3, p. 99. doi: 10.1016/0148-9062(78)90003-7
      [52]
      Y.S. Zhao, C.C. Chen, S.C. Wu, P. Guo, and B.L. Li, Effects of 2D&3D nonparallel flaws on failure characteristics of brittle rock-like samples under uniaxial compression: Insights from acoustic emission and DIC monitoring, Theor. Appl. Fract. Mech., 120(2022), art. No. 103391. doi: 10.1016/j.tafmec.2022.103391
      [53]
      P. Guo, S.C. Wu, G. Zhang, and C.Q. Chu, Effects of thermally-induced cracks on acoustic emission characteristics of granite under tensile conditions, Int. J. Rock Mech. Min. Sci., 144(2021), art. No. 104820. doi: 10.1016/j.ijrmms.2021.104820
      [54]
      B. Gutenberg and C.F. Richter, Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34(1944), No. 4, p. 185. doi: 10.1785/BSSA0340040185

    Catalog


    • /

      返回文章
      返回