留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 11
Nov.  2023

图(9)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  886
  • HTML全文浏览量:  109
  • PDF下载量:  37
  • 被引次数: 0
Xi Zhang, Yu Wang, Jiushuai Deng, Zhongyi Bai, Hongxiang Xu, Qingfeng Meng, Da Jin, and Zhenwu Sun, Effect of ammonium sulfate on the formation of zinc sulfide species on hemimorphite surface and its role in sulfidation flotation, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2147-2156. https://doi.org/10.1007/s12613-023-2650-5
Cite this article as:
Xi Zhang, Yu Wang, Jiushuai Deng, Zhongyi Bai, Hongxiang Xu, Qingfeng Meng, Da Jin, and Zhenwu Sun, Effect of ammonium sulfate on the formation of zinc sulfide species on hemimorphite surface and its role in sulfidation flotation, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2147-2156. https://doi.org/10.1007/s12613-023-2650-5
引用本文 PDF XML SpringerLink
研究论文

硫酸铵对异极矿表面硫化锌物种形成的影响及其在硫化浮选中的作用研究


    * 共同第一作者
  • 通讯作者:

    邓久帅    E-mail: dengshuai689@163.com

文章亮点

  • (1)硫酸铵能有效促进异极矿表面的硫化作用。
  • (2)[Zn(NH3)i]2+ (i = 1–4)生成并以过渡态的形式参与硫化反应。
  • (3)在硫化过程中,硫酸铵加快了异极矿的硫化反应速率。
  • (4)硫酸铵处理后异极矿表面生成了更加致密稳定的硫化层。
  • 锌在有色金属工业中起着至关重要的作用。随着硫化锌矿石的逐渐枯竭,氧化锌矿石中锌的富集和利用越来越受到人们的重视。异极矿是一种典型的氧化锌矿物,常采用硫化-黄药浮选法回收。异极矿独特的表面结构导致其与硫化剂作用困难,因此,有效强化表面硫化作用是采用泡沫浮选法回收异极矿的关键。本文通过电感耦合等离子体发射光谱仪(ICP-OES)、溶液组分化学计算(Visual MINTEQ)、X射线光电子能谱分析(XPS)、飞行时间二次离子质谱分析(ToF-SIMS)和微浮选试验等手段,系统研究了硫酸铵对异极矿表面硫化锌物种形成的影响及其在硫化浮选中的作用。结果表明,硫酸铵对异极矿的硫化浮选具有明显促进作用。这是由于经硫酸铵处理后,异极矿浮选体系中以Zn2+和(Zn[NH3]i)2+(i = 1–4)形式存在的锌组分数量增加,有利于其与溶液中的硫组分相互作用,进而在异极矿表面形成致密稳定的硫化锌层。在硫化过程中,锌铵络合物(Zn[NH3]i)2+(i = 1–4)是以过渡态的形式参与异极矿的硫化反应。此外,硫酸铵还加速了异极矿的硫化反应。
  • Research Article

    Effect of ammonium sulfate on the formation of zinc sulfide species on hemimorphite surface and its role in sulfidation flotation

    + Author Affiliations
    • Effectively strengthening the surface sulfidation is essential for recovering hemimorphite by froth flotation. In this work, inductively coupled plasma optical emission spectrometer (ICP-OES) measurements, Visual MINTEQ calculation, X-ray photoelectron spectroscopy (XPS) analysis, time of flight secondary ion mass spectrometry (ToF-SIMS) analysis, and micro-flotation experiments were explored to systematically investigate the effect of ammonium sulfate ((NH4)2SO4) on the formation of zinc sulfide species on hemimorphite surface and its role in sulfidation flotation. The results showed that (NH4)2SO4 exhibited a positive influence on hemimorphite sulfidation flotation. It was ascribed to the number of zinc components in the form of Zn2+ and [Zn(NH3)i]2+ (i = 1–4) increased in the flotation system after hemimorphite treatment with (NH4)2SO4, which was beneficial to its interaction with sulfur species in solution, resulting in a dense and stable zinc sulfide layer generated on the hemimorphite surface. [Zn(NH3)i]2+ participated in the sulfidation reaction of hemimorphite as a transition state. In addition, the sulfidation reaction of hemimorphite was accelerated by (NH4)2SO4. Thus, (NH4)2SO4 presents a vital role in promoting the sulfidation of hemimorphite.
    • loading
    • [1]
      A.L. Chen, M.C. Li, Z. Qian, Y.T. Ma, J.Y. Che, and Y.L. Ma, Hemimorphite ores: A review of processing technologies for zinc extraction, JOM, 68(2016), No. 10, p. 2688. doi: 10.1007/s11837-016-2066-z
      [2]
      S. Espiari, F. Rashchi, and S.K. Sadrnezhaad, Hydrometallurgical treatment of tailings with high zinc content, Hydrometallurgy, 82(2006), No. 1-2, p. 54. doi: 10.1016/j.hydromet.2006.01.005
      [3]
      Y.C. Zhao and R. Stanforth, Production of Zn powder by alkaline treatment of smithsonite Zn–Pb ores, Hydrometallurgy, 56(2000), No. 2, p. 237. doi: 10.1016/S0304-386X(00)00079-7
      [4]
      Q.H. Wang, X.L. Zhang, M. Jing, et al., A review of forming process and flotation mechanism of hemimorphite, Chin. J. Process Eng., 17(2017), No. 5, p. 903.
      [5]
      Q. Zhang, S.M. Wen, Q.C. Feng, and Y.B. Liu, Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector, Miner. Eng., 163(2021), art. No. 106809. doi: 10.1016/j.mineng.2021.106809
      [6]
      S. Zhang, S.M. Wen, Y.J. Xian, G.Y. Liang, and M.H. Li, Pb ion pre-modification enhances the sulfidization and floatability of smithsonite, Miner. Eng., 170(2021), art. No. 107003. doi: 10.1016/j.mineng.2021.107003
      [7]
      Q.Y. Sheng, W.Z. Yin, B. Yang, H.R. Sun, and J. Yao, Efficiently separating malachite from talc using new collector famciclovir via reverse flotation, Miner. Eng., 174(2021), art. No. 107243. doi: 10.1016/j.mineng.2021.107243
      [8]
      K. Xiong, S.M. Wen, Z.L. Liu, J.S. Deng, and Y.B. Mao, Effect of sulfidization on the stability of adsorption of isoamyl xanthate on malachite, Physicochem. Probl. Miner. Process., 56(2020), No. 3, p. 493. doi: 10.37190/ppmp/119882
      [9]
      X.D. Xie, X.B. Min, L.Y. Chai, et al., Quantitative evaluation of environmental risks of flotation tailings from hydrothermal sulfidation-flotation process, Environ. Sci. Pollut. Res. Int., 20(2013), No. 9, p. 6050. doi: 10.1007/s11356-013-1643-8
      [10]
      C.X. Li, C. Wei, Z.G. Deng, X.B. Li, M.T. Li, and H.S. Xu, Hydrothermal sulfidation and flotation of oxidized zinc–lead ore, Metall. Mater. Trans. B, 45(2014), No. 3, p. 833. doi: 10.1007/s11663-013-9887-8
      [11]
      C.X. Li, C. Wei, Z.G. Deng, et al., Kinetics of hydrothermal sulfidation of synthetic hemimorphite with elemental sulfur, Trans. Nonferrous Met. Soc. China, 23(2013), No. 6, p. 1815. doi: 10.1016/S1003-6326(13)62665-5
      [12]
      Y. Ke, N. Peng, K. Xue, et al., Sulfidation behavior and mechanism of zinc silicate roasted with pyrite, Appl. Surf. Sci., 435(2018), p. 1011. doi: 10.1016/j.apsusc.2017.11.202
      [13]
      J.W. Han, W. Liu, D.W. Wang, F. Jiao, T.F. Zhang, and W.Q. Qin, Selective sulfidation of lead smelter slag with pyrite and flotation behavior of synthetic ZnS, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2400. doi: 10.1007/s11663-016-0693-y
      [14]
      X.B. Min, K. Xue, Y. Ke, B.S. Zhou, Y.W.J. Li, and Q.W. Wang, Sulfidation roasting of hemimorphite with pyrite for the enrichment of Zn and Pb, JOM, 68(2016), No. 9, p. 2435. doi: 10.1007/s11837-016-1986-y
      [15]
      Z.Y. Lan, Z.N. Lai, Y.X. Zheng, J.F. Lv, J. Pang, and J.L. Ning, Recovery of Zn, Pb, Fe and Si from a low-grade mining ore by sulfidation roasting–beneficiation–leaching processes, J. Cent. South Univ., 27(2020), No. 1, p. 37. doi: 10.1007/s11771-020-4276-3
      [16]
      K. Jia, Q.M. Feng, G.F. Zhang, Q. Shi, and Z.Y. Chang, Understanding the roles of Na2S and Pb(II)in the flotation of hemimorphite, Miner. Eng., 111(2017), p. 167. doi: 10.1016/j.mineng.2017.06.010
      [17]
      K. Jia, Q.M. Feng, G.F. Zhang, Q. Shi, Y.J. Luo, and C.B. Li, Improved hemimorphite flotation using xanthate as a collector with S(II) and Pb(II) activation, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 849. doi: 10.1007/s12613-018-1634-3
      [18]
      X. Zhang, J.S. Deng, Y. Wang, G.Y. Wang, and H.X. Xu, Novel insight into the lead sulfide species formed on hemimorphite surface during lead ions improved sulfidation, Colloids Surf. A, 653(2022), art. No. 129959. doi: 10.1016/j.colsurfa.2022.129959
      [19]
      D.Q. Xing, Y.Q. Huang, C.S. Lin, W.R. Zuo, and R.D. Deng, Strengthening of sulfidization flotation of hemimorphite via fluorine ion modification, Sep. Purif. Technol., 269(2021), art. No. 118769. doi: 10.1016/j.seppur.2021.118769
      [20]
      Q. Zuo, J. Yang, Y.F. Shi, and D.D. Wu, Activating hemimorphite using a sulfidation-flotation process with sodium sulfosalicylate as the complexing agent, J. Mater. Res. Technol., 9(2020), No. 5, p. 10110. doi: 10.1016/j.jmrt.2020.07.005
      [21]
      J.S. Deng, H. Lai, M. Chen, et al., Effect of iron concentration on the crystallization and electronic structure of sphalerite/marmatite: A DFT study, Miner. Eng., 136(2019), p. 168. doi: 10.1016/j.mineng.2019.02.012
      [22]
      X. Zhang, M.Z. Huangfu, J.S. Deng, et al., Surface characteristics and flotation behaviours of specularite as influenced by lead ion modification, Sep. Purif. Technol., 276(2021), art. No. 119384. doi: 10.1016/j.seppur.2021.119384
      [23]
      X. Zhang, J.S. Deng, M.Z. Huangfu, et al., Novel insights into the influence of ferric ion as a surface modifier to enhance the floatability of specularite, Powder Technol., 398(2022), art. No. 117141. doi: 10.1016/j.powtec.2022.117141
      [24]
      J.Z. Cai, J.S. Deng, L. Wang, et al., Reagent types and action mechanisms in ilmenite flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1656. doi: 10.1007/s12613-021-2380-5
      [25]
      D.D. Wu, W.H. Ma, Y.B. Mao, et al, Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator, Sci. Rep., 7(2017), art. No. 2086. doi: 10.1038/s41598-017-02136-x
      [26]
      P.L. Shen, D.W. Liu, X.H. Xu, et al., Effects of ammonium phosphate on the formation of crystal copper sulfide on chrysocolla surfaces and its response to flotation, Miner. Eng., 155(2020), art. No. 106300. doi: 10.1016/j.mineng.2020.106300
      [27]
      D.D. Wu, W.H. Ma, S.M. Wen, S.J. Bai, J.S. Deng, and Q. Yin, Contribution of ammonium ions to sulfidation–flotation of smithsonite, J. Taiwan Inst. Chem. Eng., 78(2017), p. 20. doi: 10.1016/j.jtice.2017.05.015
      [28]
      S.J. Bai, C.L. Li, X.Y. Fu, Z. Ding, and S.M. Wen, Promoting sulfidation of smithsonite by zinc sulfide species increase with addition of ammonium chloride and its effect on flotation performance, Miner. Eng., 125(2018), p. 190. doi: 10.1016/j.mineng.2018.03.040
      [29]
      Q. Zhang, S.M. Wen, Q.C. Feng, and H. Wang, Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1150. doi: 10.1007/s12613-021-2379-y
      [30]
      J.S. Deng, Z.Y. Bai, B. Zhao, et al., Opportunities and challenges in microwave absorption of nickel–carbon composites, Phys. Chem. Chem. Phys., 23(2021), No. 37, p. 20795. doi: 10.1039/D1CP03522C
      [31]
      Z.X. Liu, Z.L. Yin, H.P. Hu, and Q.Y. Chen, Dissolution kinetics of malachite in ammonia/ammonium sulphate solution, J. Cent. South Univ., 19(2012), No. 4, p. 903. doi: 10.1007/s11771-012-1091-5
      [32]
      H.S. Dong and J. Yang, The leaching of copper oxide ore in ammonium chloride solution, Appl. Mech. Mater., 675-677(2014), p. 1459. doi: 10.4028/www.scientific.net/AMM.675-677.1459
      [33]
      Z.Y. Ding, Z.L. Yin, H.P. Hu, and Q.Y. Chen, Dissolution kinetics of zinc silicate (hemimorphite) in ammoniacal solution, Hydrometallurgy, 104(2010), No. 2, p. 201. doi: 10.1016/j.hydromet.2010.06.004
      [34]
      S.H. Ju, M.T. Tang, S.H. Yang, and Y.N. Li, Dissolution kinetics of smithsonite ore in ammonium chloride solution, Hydrometallurgy, 80(2005), No. 1-2, p. 67. doi: 10.1016/j.hydromet.2005.07.003
      [35]
      Z.L. Yin, Z.Y. Ding, H.P. Hu, K. Liu, and Q.Y. Chen, Dissolution of zinc silicate (hemimorphite) with ammonia-ammonium chloride solution, Hydrometallurgy, 103(2010), No. 1-4, p. 215. doi: 10.1016/j.hydromet.2010.03.006
      [36]
      A. Kunz and S. Mukhtar, Hydrophobic membrane technology for ammonia extraction from wastewaters, Eng. Agríc., 36(2016), No. 2, p. 377.
      [37]
      S.J. Bai, P. Yu, Z. Ding, C.L. Li, Y.J. Xian, and S.M. Wen, Ammonium chloride catalyze sulfidation mechanism of smithsonite surface: Visual MINTEQ models, ToF-SIMS and DFT studies, Miner. Eng., 146(2020), art. No. 106115. doi: 10.1016/j.mineng.2019.106115
      [38]
      P.L. Shen, D.W. Liu, X.L. Zhang, X.D. Jia, K.W. Song, and D. Liu, Effect of (NH4)2SO4 on eliminating the depression of excess sulfide ions in the sulfidization flotation of malachite, Miner. Eng., 137(2019), p. 43. doi: 10.1016/j.mineng.2019.03.015
      [39]
      W.J. Zhao, D.W. Liu, and Q.C. Feng, Enhancement of salicylhydroxamic acid adsorption by Pb(II) modified hemimorphite surfaces and its effect on floatability, Miner. Eng., 152(2020), art. No. 106373. doi: 10.1016/j.mineng.2020.106373
      [40]
      W.J. Zhao, D.W. Liu, S.M. Wen, and Q.C. Feng, Surface modification of hemimorphite with lead ions and its effect on flotation and oleate adsorption, Appl. Surf. Sci., 483(2019), p. 849. doi: 10.1016/j.apsusc.2019.04.038
      [41]
      R.Z. Liu, B. Pei, Z.C. Liu, Y.W. Wang, J.L. Li, and D.W. Liu, Improved understanding of the sulfidization mechanism in amine flotation of smithsonite: An XPS, AFM and UV–Vis DRS study, Minerals, 10(2020), No. 4, art. No. 370. doi: 10.3390/min10040370
      [42]
      Y. Mikhlin, A. Karacharov, Y. Tomashevich, and A. Shchukarev, Interaction of sphalerite with potassium n-butyl xanthate and copper sulfate solutions studied by XPS of fast-frozen samples and zeta-potential measurement, Vacuum, 125(2016), p. 98. doi: 10.1016/j.vacuum.2015.12.006
      [43]
      B. Luo, Q.J. Liu, J.S. Deng, S.M. Li, L. Yu, and H. Lai, Determining the lead-sulfur species formed on smithsonite surfaces during lead-ion enhanced sulfidation processing, Appl. Surf. Sci., 506(2020), art. No. 144628. doi: 10.1016/j.apsusc.2019.144628
      [44]
      T.C. Wang, G.J. Sun, J.S. Deng, et al., A depressant for marmatite flotation: Synthesis, characterisation and floatation performance, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1048. doi: 10.1007/s12613-022-2586-1
      [45]
      Q.C. Feng, W.J. Zhao, and S.M. Wen, Surface modification of malachite with ethanediamine and its effect on sulfidization flotation, Appl. Surf. Sci., 436(2018), p. 823. doi: 10.1016/j.apsusc.2017.12.113
      [46]
      Z. Cao, X.M. Chen, and Y.J. Peng, The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation, Miner. Eng., 119(2018), p. 93. doi: 10.1016/j.mineng.2018.01.029
      [47]
      Y.F. Mu, L.Q. Li, and Y.J. Peng, Surface properties of fractured and polished pyrite in relation to flotation, Miner. Eng., 101(2017), p. 10. doi: 10.1016/j.mineng.2016.11.012
      [48]
      R.P. Liao, S.M. Wen, Q.C. Feng, J.S. Deng, and H. Lai, Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 271. doi: 10.1007/s12613-022-2505-5
      [49]
      J.S. Deng, Y.B. Mao, S.M. Wen, J. Liu, Y.J. Xian, and Q.C. Feng, New influence factor inducing difficulty in selective flotation separation of Cu–Zn mixed sulfide minerals, Int. J. Miner. Metall. Mater., 22(2015), No. 2, p. 111. doi: 10.1007/s12613-015-1050-x
      [50]
      J. Liu, M. Ejtemaei, A.V. Nguyen, S.M. Wen, and Y. Zeng, Surface chemistry of Pb-activated sphalerite, Miner. Eng., 145(2020), art. No. 106058. doi: 10.1016/j.mineng.2019.106058
      [51]
      J.L. Li, K.W. Song, D.W. Liu, X.L. Zhang, J.M. Li, and S.F. Ao, Research progress on activation and deactivation of sphalerite flotation, Chin. J. Process Eng., 18(2018), No. 1, p. 11.

    Catalog


    • /

      返回文章
      返回