Cite this article as: |
Xi Zhang, Yu Wang, Jiushuai Deng, Zhongyi Bai, Hongxiang Xu, Qingfeng Meng, Da Jin, and Zhenwu Sun, Effect of ammonium sulfate on the formation of zinc sulfide species on hemimorphite surface and its role in sulfidation flotation, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2147-2156. https://doi.org/10.1007/s12613-023-2650-5 |
邓久帅 E-mail: dengshuai689@163.com
[1] |
A.L. Chen, M.C. Li, Z. Qian, Y.T. Ma, J.Y. Che, and Y.L. Ma, Hemimorphite ores: A review of processing technologies for zinc extraction, JOM, 68(2016), No. 10, p. 2688. doi: 10.1007/s11837-016-2066-z
|
[2] |
S. Espiari, F. Rashchi, and S.K. Sadrnezhaad, Hydrometallurgical treatment of tailings with high zinc content, Hydrometallurgy, 82(2006), No. 1-2, p. 54. doi: 10.1016/j.hydromet.2006.01.005
|
[3] |
Y.C. Zhao and R. Stanforth, Production of Zn powder by alkaline treatment of smithsonite Zn–Pb ores, Hydrometallurgy, 56(2000), No. 2, p. 237. doi: 10.1016/S0304-386X(00)00079-7
|
[4] |
Q.H. Wang, X.L. Zhang, M. Jing, et al., A review of forming process and flotation mechanism of hemimorphite, Chin. J. Process Eng., 17(2017), No. 5, p. 903.
|
[5] |
Q. Zhang, S.M. Wen, Q.C. Feng, and Y.B. Liu, Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector, Miner. Eng., 163(2021), art. No. 106809. doi: 10.1016/j.mineng.2021.106809
|
[6] |
S. Zhang, S.M. Wen, Y.J. Xian, G.Y. Liang, and M.H. Li, Pb ion pre-modification enhances the sulfidization and floatability of smithsonite, Miner. Eng., 170(2021), art. No. 107003. doi: 10.1016/j.mineng.2021.107003
|
[7] |
Q.Y. Sheng, W.Z. Yin, B. Yang, H.R. Sun, and J. Yao, Efficiently separating malachite from talc using new collector famciclovir via reverse flotation, Miner. Eng., 174(2021), art. No. 107243. doi: 10.1016/j.mineng.2021.107243
|
[8] |
K. Xiong, S.M. Wen, Z.L. Liu, J.S. Deng, and Y.B. Mao, Effect of sulfidization on the stability of adsorption of isoamyl xanthate on malachite, Physicochem. Probl. Miner. Process., 56(2020), No. 3, p. 493. doi: 10.37190/ppmp/119882
|
[9] |
X.D. Xie, X.B. Min, L.Y. Chai, et al., Quantitative evaluation of environmental risks of flotation tailings from hydrothermal sulfidation-flotation process, Environ. Sci. Pollut. Res. Int., 20(2013), No. 9, p. 6050. doi: 10.1007/s11356-013-1643-8
|
[10] |
C.X. Li, C. Wei, Z.G. Deng, X.B. Li, M.T. Li, and H.S. Xu, Hydrothermal sulfidation and flotation of oxidized zinc–lead ore, Metall. Mater. Trans. B, 45(2014), No. 3, p. 833. doi: 10.1007/s11663-013-9887-8
|
[11] |
C.X. Li, C. Wei, Z.G. Deng, et al., Kinetics of hydrothermal sulfidation of synthetic hemimorphite with elemental sulfur, Trans. Nonferrous Met. Soc. China, 23(2013), No. 6, p. 1815. doi: 10.1016/S1003-6326(13)62665-5
|
[12] |
Y. Ke, N. Peng, K. Xue, et al., Sulfidation behavior and mechanism of zinc silicate roasted with pyrite, Appl. Surf. Sci., 435(2018), p. 1011. doi: 10.1016/j.apsusc.2017.11.202
|
[13] |
J.W. Han, W. Liu, D.W. Wang, F. Jiao, T.F. Zhang, and W.Q. Qin, Selective sulfidation of lead smelter slag with pyrite and flotation behavior of synthetic ZnS, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2400. doi: 10.1007/s11663-016-0693-y
|
[14] |
X.B. Min, K. Xue, Y. Ke, B.S. Zhou, Y.W.J. Li, and Q.W. Wang, Sulfidation roasting of hemimorphite with pyrite for the enrichment of Zn and Pb, JOM, 68(2016), No. 9, p. 2435. doi: 10.1007/s11837-016-1986-y
|
[15] |
Z.Y. Lan, Z.N. Lai, Y.X. Zheng, J.F. Lv, J. Pang, and J.L. Ning, Recovery of Zn, Pb, Fe and Si from a low-grade mining ore by sulfidation roasting–beneficiation–leaching processes, J. Cent. South Univ., 27(2020), No. 1, p. 37. doi: 10.1007/s11771-020-4276-3
|
[16] |
K. Jia, Q.M. Feng, G.F. Zhang, Q. Shi, and Z.Y. Chang, Understanding the roles of Na2S and Pb(II)in the flotation of hemimorphite, Miner. Eng., 111(2017), p. 167. doi: 10.1016/j.mineng.2017.06.010
|
[17] |
K. Jia, Q.M. Feng, G.F. Zhang, Q. Shi, Y.J. Luo, and C.B. Li, Improved hemimorphite flotation using xanthate as a collector with S(II) and Pb(II) activation, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 849. doi: 10.1007/s12613-018-1634-3
|
[18] |
X. Zhang, J.S. Deng, Y. Wang, G.Y. Wang, and H.X. Xu, Novel insight into the lead sulfide species formed on hemimorphite surface during lead ions improved sulfidation, Colloids Surf. A, 653(2022), art. No. 129959. doi: 10.1016/j.colsurfa.2022.129959
|
[19] |
D.Q. Xing, Y.Q. Huang, C.S. Lin, W.R. Zuo, and R.D. Deng, Strengthening of sulfidization flotation of hemimorphite via fluorine ion modification, Sep. Purif. Technol., 269(2021), art. No. 118769. doi: 10.1016/j.seppur.2021.118769
|
[20] |
Q. Zuo, J. Yang, Y.F. Shi, and D.D. Wu, Activating hemimorphite using a sulfidation-flotation process with sodium sulfosalicylate as the complexing agent, J. Mater. Res. Technol., 9(2020), No. 5, p. 10110. doi: 10.1016/j.jmrt.2020.07.005
|
[21] |
J.S. Deng, H. Lai, M. Chen, et al., Effect of iron concentration on the crystallization and electronic structure of sphalerite/marmatite: A DFT study, Miner. Eng., 136(2019), p. 168. doi: 10.1016/j.mineng.2019.02.012
|
[22] |
X. Zhang, M.Z. Huangfu, J.S. Deng, et al., Surface characteristics and flotation behaviours of specularite as influenced by lead ion modification, Sep. Purif. Technol., 276(2021), art. No. 119384. doi: 10.1016/j.seppur.2021.119384
|
[23] |
X. Zhang, J.S. Deng, M.Z. Huangfu, et al., Novel insights into the influence of ferric ion as a surface modifier to enhance the floatability of specularite, Powder Technol., 398(2022), art. No. 117141. doi: 10.1016/j.powtec.2022.117141
|
[24] |
J.Z. Cai, J.S. Deng, L. Wang, et al., Reagent types and action mechanisms in ilmenite flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1656. doi: 10.1007/s12613-021-2380-5
|
[25] |
D.D. Wu, W.H. Ma, Y.B. Mao, et al, Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator, Sci. Rep., 7(2017), art. No. 2086. doi: 10.1038/s41598-017-02136-x
|
[26] |
P.L. Shen, D.W. Liu, X.H. Xu, et al., Effects of ammonium phosphate on the formation of crystal copper sulfide on chrysocolla surfaces and its response to flotation, Miner. Eng., 155(2020), art. No. 106300. doi: 10.1016/j.mineng.2020.106300
|
[27] |
D.D. Wu, W.H. Ma, S.M. Wen, S.J. Bai, J.S. Deng, and Q. Yin, Contribution of ammonium ions to sulfidation–flotation of smithsonite, J. Taiwan Inst. Chem. Eng., 78(2017), p. 20. doi: 10.1016/j.jtice.2017.05.015
|
[28] |
S.J. Bai, C.L. Li, X.Y. Fu, Z. Ding, and S.M. Wen, Promoting sulfidation of smithsonite by zinc sulfide species increase with addition of ammonium chloride and its effect on flotation performance, Miner. Eng., 125(2018), p. 190. doi: 10.1016/j.mineng.2018.03.040
|
[29] |
Q. Zhang, S.M. Wen, Q.C. Feng, and H. Wang, Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1150. doi: 10.1007/s12613-021-2379-y
|
[30] |
J.S. Deng, Z.Y. Bai, B. Zhao, et al., Opportunities and challenges in microwave absorption of nickel–carbon composites, Phys. Chem. Chem. Phys., 23(2021), No. 37, p. 20795. doi: 10.1039/D1CP03522C
|
[31] |
Z.X. Liu, Z.L. Yin, H.P. Hu, and Q.Y. Chen, Dissolution kinetics of malachite in ammonia/ammonium sulphate solution, J. Cent. South Univ., 19(2012), No. 4, p. 903. doi: 10.1007/s11771-012-1091-5
|
[32] |
H.S. Dong and J. Yang, The leaching of copper oxide ore in ammonium chloride solution, Appl. Mech. Mater., 675-677(2014), p. 1459. doi: 10.4028/www.scientific.net/AMM.675-677.1459
|
[33] |
Z.Y. Ding, Z.L. Yin, H.P. Hu, and Q.Y. Chen, Dissolution kinetics of zinc silicate (hemimorphite) in ammoniacal solution, Hydrometallurgy, 104(2010), No. 2, p. 201. doi: 10.1016/j.hydromet.2010.06.004
|
[34] |
S.H. Ju, M.T. Tang, S.H. Yang, and Y.N. Li, Dissolution kinetics of smithsonite ore in ammonium chloride solution, Hydrometallurgy, 80(2005), No. 1-2, p. 67. doi: 10.1016/j.hydromet.2005.07.003
|
[35] |
Z.L. Yin, Z.Y. Ding, H.P. Hu, K. Liu, and Q.Y. Chen, Dissolution of zinc silicate (hemimorphite) with ammonia-ammonium chloride solution, Hydrometallurgy, 103(2010), No. 1-4, p. 215. doi: 10.1016/j.hydromet.2010.03.006
|
[36] |
A. Kunz and S. Mukhtar, Hydrophobic membrane technology for ammonia extraction from wastewaters, Eng. Agríc., 36(2016), No. 2, p. 377.
|
[37] |
S.J. Bai, P. Yu, Z. Ding, C.L. Li, Y.J. Xian, and S.M. Wen, Ammonium chloride catalyze sulfidation mechanism of smithsonite surface: Visual MINTEQ models, ToF-SIMS and DFT studies, Miner. Eng., 146(2020), art. No. 106115. doi: 10.1016/j.mineng.2019.106115
|
[38] |
P.L. Shen, D.W. Liu, X.L. Zhang, X.D. Jia, K.W. Song, and D. Liu, Effect of (NH4)2SO4 on eliminating the depression of excess sulfide ions in the sulfidization flotation of malachite, Miner. Eng., 137(2019), p. 43. doi: 10.1016/j.mineng.2019.03.015
|
[39] |
W.J. Zhao, D.W. Liu, and Q.C. Feng, Enhancement of salicylhydroxamic acid adsorption by Pb(II) modified hemimorphite surfaces and its effect on floatability, Miner. Eng., 152(2020), art. No. 106373. doi: 10.1016/j.mineng.2020.106373
|
[40] |
W.J. Zhao, D.W. Liu, S.M. Wen, and Q.C. Feng, Surface modification of hemimorphite with lead ions and its effect on flotation and oleate adsorption, Appl. Surf. Sci., 483(2019), p. 849. doi: 10.1016/j.apsusc.2019.04.038
|
[41] |
R.Z. Liu, B. Pei, Z.C. Liu, Y.W. Wang, J.L. Li, and D.W. Liu, Improved understanding of the sulfidization mechanism in amine flotation of smithsonite: An XPS, AFM and UV–Vis DRS study, Minerals, 10(2020), No. 4, art. No. 370. doi: 10.3390/min10040370
|
[42] |
Y. Mikhlin, A. Karacharov, Y. Tomashevich, and A. Shchukarev, Interaction of sphalerite with potassium n-butyl xanthate and copper sulfate solutions studied by XPS of fast-frozen samples and zeta-potential measurement, Vacuum, 125(2016), p. 98. doi: 10.1016/j.vacuum.2015.12.006
|
[43] |
B. Luo, Q.J. Liu, J.S. Deng, S.M. Li, L. Yu, and H. Lai, Determining the lead-sulfur species formed on smithsonite surfaces during lead-ion enhanced sulfidation processing, Appl. Surf. Sci., 506(2020), art. No. 144628. doi: 10.1016/j.apsusc.2019.144628
|
[44] |
T.C. Wang, G.J. Sun, J.S. Deng, et al., A depressant for marmatite flotation: Synthesis, characterisation and floatation performance, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1048. doi: 10.1007/s12613-022-2586-1
|
[45] |
Q.C. Feng, W.J. Zhao, and S.M. Wen, Surface modification of malachite with ethanediamine and its effect on sulfidization flotation, Appl. Surf. Sci., 436(2018), p. 823. doi: 10.1016/j.apsusc.2017.12.113
|
[46] |
Z. Cao, X.M. Chen, and Y.J. Peng, The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation, Miner. Eng., 119(2018), p. 93. doi: 10.1016/j.mineng.2018.01.029
|
[47] |
Y.F. Mu, L.Q. Li, and Y.J. Peng, Surface properties of fractured and polished pyrite in relation to flotation, Miner. Eng., 101(2017), p. 10. doi: 10.1016/j.mineng.2016.11.012
|
[48] |
R.P. Liao, S.M. Wen, Q.C. Feng, J.S. Deng, and H. Lai, Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 271. doi: 10.1007/s12613-022-2505-5
|
[49] |
J.S. Deng, Y.B. Mao, S.M. Wen, J. Liu, Y.J. Xian, and Q.C. Feng, New influence factor inducing difficulty in selective flotation separation of Cu–Zn mixed sulfide minerals, Int. J. Miner. Metall. Mater., 22(2015), No. 2, p. 111. doi: 10.1007/s12613-015-1050-x
|
[50] |
J. Liu, M. Ejtemaei, A.V. Nguyen, S.M. Wen, and Y. Zeng, Surface chemistry of Pb-activated sphalerite, Miner. Eng., 145(2020), art. No. 106058. doi: 10.1016/j.mineng.2019.106058
|
[51] |
J.L. Li, K.W. Song, D.W. Liu, X.L. Zhang, J.M. Li, and S.F. Ao, Research progress on activation and deactivation of sphalerite flotation, Chin. J. Process Eng., 18(2018), No. 1, p. 11.
|