留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 12
Dec.  2023

图(12)

数据统计

分享

计量
  • 文章访问数:  795
  • HTML全文浏览量:  361
  • PDF下载量:  55
  • 被引次数: 0
Yiqi Zhou, Sultan Mahmood,  and Dirk Lars Engelberg, High throughput screening of localised and general corrosion in type 2205 duplex stainless steel at ambient temperature, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2375-2385. https://doi.org/10.1007/s12613-023-2651-4
Cite this article as:
Yiqi Zhou, Sultan Mahmood,  and Dirk Lars Engelberg, High throughput screening of localised and general corrosion in type 2205 duplex stainless steel at ambient temperature, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2375-2385. https://doi.org/10.1007/s12613-023-2651-4
引用本文 PDF XML SpringerLink
研究论文

室温下2205双相不锈钢点蚀和全面腐蚀高通量检测


  • 通讯作者:

    周奕骐    E-mail: ustbyiqizhou@ustb.edu.cn

文章亮点

  • (1) 双极性电化学可以在室温下能同时测试2205双相不锈钢的点蚀、缝隙腐蚀和全面腐蚀。
  • (2) 双极性电化学评估了双相不锈钢中点蚀的萌生、生长以及缝隙腐蚀的发展。
  • (3) 临界点蚀和缝隙腐蚀电位与电化学实验时间有关。
  • (4) 对奥氏体和铁素体之间选择性腐蚀的演变进行了讨论。
  • 双极性电化学可以在测试样品上产生梯度电势,使得同一块样品上不同位置同时产生阳极和阴极反应,可以用于测试各类型腐蚀在不同电位条件下萌生和生长机理。在室温条件下, 在单块2205双相不锈钢样品上测试到点蚀、缝隙腐蚀和全面腐蚀。当亚稳态点蚀的深度在10–20 μm并且外界电位在 +0.9 至 +1.2 V vs. OCP 的条件下,亚稳态点蚀发展为稳态点蚀的几率为 55%–75%。所有点蚀萌生在铁素体相内或奥氏体与铁素体间界面处。实验结果发现,临界点蚀和缝隙腐蚀的电位与实验时间有关,临界点蚀/缝隙腐蚀电位在150秒后的分别为0.87 V vs. OCP 和 0.80 V vs. OCP ,但是当实验时间增加到900秒时,临界点蚀/缝隙腐蚀电位下降到 0.84 V vs. OCP 和 0.76 V vs. OCP。本文讨论在不同电位和实验时间条件下,点蚀和缝隙腐蚀在双相不锈钢中生长机理的变化。同时发现,在全面腐蚀区域中,铁素体溶解速度快于奥氏体。
  • Research Article

    High throughput screening of localised and general corrosion in type 2205 duplex stainless steel at ambient temperature

    + Author Affiliations
    • Bipolar electrochemistry is used to produce a linear potential gradient across a bipolar electrode (BPE), providing direct access to the anodic and cathodic reactions under a wide range of applied potentials. The occurrence of pitting corrosion, crevice corrosion, and general corrosion on type 2205 duplex stainless steel (DSS 2205) BPE has been observed at room temperature. The critical pit depth of 10–20 μm with a 55%–75% probability of pits developing into stable pits at potential from +0.9 to +1.2 V vs. OCP (open circuit potential) are measured. All pit nucleation sites are either within ferritic grains or at the interface between austenite and ferrite. The critical conditions for pitting and crevice corrosion are discussed with Epit (critical pitting potential) and Ecre (critical crevice potential) decreasing from 0.87 and 0.80 V vs. OCP after 150 s of exposure to 0.84 and 0.76 V vs. OCP after 900 s of exposure, respectively. Pit growth kinetics under different applied bipolar potentials and exposure times have been obtained. The ferrite is shown to be more susceptible to general dissolution.
    • loading
    • [1]
      A. Eden, K. Scida, N. Arroyo-Currás, J.C.T. Eijkel, C.D. Meinhart, and S. Pennathur, Discharging behavior of confined bipolar electrodes: Coupled electrokinetic and electrochemical dynamics, Electrochim. Acta, 330(2020), art. No. 135275. doi: 10.1016/j.electacta.2019.135275
      [2]
      A. Eden, K. Scida, N. Arroyo-Currás, J.C.T. Eijkel, C.D. Meinhart, and S. Pennathur, Modeling faradaic reactions and electrokinetic phenomena at a nanochannel-confined bipolar electrode, J. Phys. Chem. C, 123(2019), No. 9, p. 5353. doi: 10.1021/acs.jpcc.8b10473
      [3]
      A. Kuhn, R.M. Crooks, and S. Inagi, A compelling case for bipolar electrochemistry, ChemElectroChem, 3(2016), No. 3, p. 351. doi: 10.1002/celc.201500569
      [4]
      L. Koefoed, S.U. Pedersen, and K. Daasbjerg, Bipolar electrochemistry—A wireless approach for electrode reactions, Curr. Opin. Electrochem., 2(2017), No. 1, p. 13. doi: 10.1016/j.coelec.2017.02.001
      [5]
      G. Loget and A. Kuhn, Shaping and exploring the micro- and nanoworld using bipolar electrochemistry, Anal. Bioanal. Chem., 400(2011), No. 6, p. 1691. doi: 10.1007/s00216-011-4862-1
      [6]
      S. Munktell, M. Tydén, J. Högström, L. Nyholm, and F. Björefors, Bipolar electrochemistry for high-throughput corrosion screening, Electrochem. Commun., 34(2013), p. 274. doi: 10.1016/j.elecom.2013.07.011
      [7]
      S. Munktell, L. Nyholm, and F. Björefors, Towards high throughput corrosion screening using arrays of bipolar electrodes, J. Electroanal. Chem., 747(2015), p. 77. doi: 10.1016/j.jelechem.2015.04.008
      [8]
      N. Pébère and V. Vivier, Local electrochemical measurements in bipolar experiments for corrosion studies, ChemElectroChem, 3(2016), No. 3, p. 415. doi: 10.1002/celc.201500375
      [9]
      Y.Q. Zhou, N. Stevens, and D.L. Engelberg, Corrosion electrochemistry with a segmented array bipolar electrode, Electrochim. Acta, 375(2021), art. No. 137668. doi: 10.1016/j.electacta.2020.137668
      [10]
      Y.Q. Zhou and D.L. Engelberg, On the application of bipolar electrochemistry to characterise the localised corrosion behaviour of type 420 ferritic stainless steel, Metals, 10(2020), No. 6, art. No. 794. doi: 10.3390/met10060794
      [11]
      Y.Q. Zhou, S. Mahmood, and D.L. Engelberg, A novel high throughput electrochemistry corrosion test method: Bipolar electrochemistry, Curr. Opin. Electrochem., 39(2023), art. No. 101263. doi: 10.1016/j.coelec.2023.101263
      [12]
      Y.Q. Zhou and D.L. Engelberg, Time-lapse observation of pitting corrosion in ferritic stainless steel under bipolar electrochemistry control, J. Electroanal. Chem., 899(2021), art. No. 115599. doi: 10.1016/j.jelechem.2021.115599
      [13]
      Y.Q. Zhou, A. Kablan, and D.L. Engelberg, Metallographic screening of duplex stainless steel weld microstructure with a bipolar electrochemistry technique, Mater. Charact., 169(2020), art. No. 110605. doi: 10.1016/j.matchar.2020.110605
      [14]
      Y.Q. Zhou and D.L. Engelberg, Application of bipolar electrochemistry to assess the ambient temperature corrosion resistance of solution annealed type 2205 duplex stainless steel, Mater. Chem. Phys., 275(2022), art. No. 125183. doi: 10.1016/j.matchemphys.2021.125183
      [15]
      Y.Q. Zhou and D.L. Engelberg, Accessing the full spectrum of corrosion behaviour of tempered type 420 stainless steel, Mater. Corros., 72(2021), No. 11, p. 1718. doi: 10.1002/maco.202112442
      [16]
      Y.Q. Zhou, S. Mahmood, and D.L. Engelberg, Bipolar electrochemistry for high throughput screening of localised corrosion in stainless steel rebars, Constr. Build. Mater., 366(2023), art. No. 130174. doi: 10.1016/j.conbuildmat.2022.130174
      [17]
      M. Hoseinpoor, M. Momeni, M. Moayed, and A. Davoodi, EIS assessment of critical pitting temperature of 2205 duplex stainless steel in acidified ferric chloride solution, Corros. Sci., 80(2014), p. 197. doi: 10.1016/j.corsci.2013.11.023
      [18]
      N. Ebrahimi, M. Momeni, A. Kosari, M. Zakeri, and M.H. Moayed, A comparative study of critical pitting temperature (CPT) of stainless steels by electrochemical impedance spectroscopy (EIS), potentiodynamic and potentiostatic techniques, Corros. Sci., 59(2012), p. 96. doi: 10.1016/j.corsci.2012.02.026
      [19]
      F. Eghbali, M.H. Moayed, A. Davoodi, and N. Ebrahimi, Critical pitting temperature (CPT) assessment of 2205 duplex stainless steel in 0.1 M NaCl at various molybdate concentrations, Corros. Sci., 53(2011), No. 1, p. 513. doi: 10.1016/j.corsci.2010.08.008
      [20]
      Y.Q. Zhou and D. Engelberg, Fast testing of ambient temperature pitting corrosion in type 2205 duplex stainless steel by bipolar electrochemistry experiments, Electrochem. Commun., 117(2020), art. No. 106779. doi: 10.1016/j.elecom.2020.106779
      [21]
      Y.Q. Zhou and D.L. Engelberg, Application of a modified bi-polar electrochemistry approach to determine pitting corrosion characteristics, Electrochem. Commun., 93(2018), p. 158. doi: 10.1016/j.elecom.2018.06.013
      [22]
      Y.Q. Zhou, J.T. Qi, and D.L. Engelberg, On the application of bipolar electrochemistry for simulating galvanic corrosion behaviour of dissimilar stainless steels, Electrochem. Commun., 126(2021), art. No. 107023. doi: 10.1016/j.elecom.2021.107023
      [23]
      Y.Q. Zhou, S. Mahmood, and D.L. Engelberg, Brass dezincification with a bipolar electrochemistry technique, Surf. Interfaces, 22(2021), art. No. 100865. doi: 10.1016/j.surfin.2020.100865
      [24]
      R.N. Gunn, Duplex Stainless Steels: Microstructure, Properties and Applications, Woodhead publishing, Cambridge, 1997, p. 3.
      [25]
      H. Tan, Z.Y. Wang, Y.M. Jiang, et al., Annealing temperature effect on the pitting corrosion resistance of plasma arc welded joints of duplex stainless steel UNS S32304 in 1.0 M NaCl, Corros. Sci., 53(2011), No. 6, p. 2191. doi: 10.1016/j.corsci.2011.02.041
      [26]
      J.O. Nilsson, Super duplex stainless steels, Mater. Sci. Technol., 8(1992), No. 8, p. 685. doi: 10.1179/mst.1992.8.8.685
      [27]
      L. Sun, Y.T. Sun, Y.Y. Liu, N.W. Dai, J. Li, and Y.M. Jiang, Effect of annealing temperature on pitting behavior and microstructure evolution of hyper-duplex stainless steel 2707, Mater. Corros., 70(2019), No. 9, p. 1682. doi: 10.1002/maco.201910801
      [28]
      H. Tan, Y.M. Jiang, B. Deng, T. Sun, J.L. Xu, and J. Li, Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750, Mater. Charact., 60(2009), No. 9, p. 1049. doi: 10.1016/j.matchar.2009.04.009
      [29]
      M. Gholami, M. Hoseinpoor, and M.H. Moayed, A statistical study on the effect of annealing temperature on pitting corrosion resistance of 2205 duplex stainless steel, Corros. Sci., 94(2015), p. 156. doi: 10.1016/j.corsci.2015.01.054
      [30]
      L.H. Zhang, W. Zhang, Y.M. Jiang, B. Deng, D.M. Sun, and J. Li, Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101, Electrochim. Acta, 54(2009), No. 23, p. 5387. doi: 10.1016/j.electacta.2009.04.023
      [31]
      S.T. Kim, S.Y. Kim, I.S. Lee, Y.S. Park, M.C. Shin, and Y.S. Kim, Effects of shielding gases on the microstructure and localized corrosion of tube-to-tube sheet welds of super austenitic stainless steel for seawater cooled condenser, Corros. Sci., 53(2011), No. 8, p. 2611. doi: 10.1016/j.corsci.2011.04.021
      [32]
      N. Ebrahimi, M.H. Moayed, and A. Davoodi, Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium, Corros. Sci., 53(2011), No. 4, p. 1278. doi: 10.1016/j.corsci.2010.12.019
      [33]
      M. Adeli, M.A. Golozar, and K. Raeissi, Pitting corrosion of SAF2205 duplex stainless steel in acetic acid containing bromide and chloride, Chem. Eng. Commun., 197(2010), No. 11, p. 1404. doi: 10.1080/00986441003626151
      [34]
      C. Örnek, X.L. Zhong, and D.L. Engelberg, Low-temperature environmentally assisted cracking of grade 2205 duplex stainless steel beneath a MgCl2:FeCl3 Salt droplet, Corrosion, 72(2016), No. 3, p. 384. doi: 10.5006/1888
      [35]
      Y.J. Kim, S.W. Kim, H.B. Kim, C.N. Park, Y.I. Choi, and C.J. Park, Effects of the precipitation of secondary phases on the erosion-corrosion of 25% Cr duplex stainless steel, Corros. Sci., 152(2019), p. 202. doi: 10.1016/j.corsci.2019.03.006
      [36]
      B. Krawczyk, P. Cook, J. Hobbs, and D.L. Engelberg, Corrosion behavior of cold rolled type 316L stainless steel in HCl-containing environments, Corrosion, 73(2017), No. 11, p. 1346. doi: 10.5006/2415
      [37]
      H. Hwang and Y. Park, Effects of heat treatment on the phase ratio and corrosion resistance of duplex stainless steel, Mater. Trans., 50(2009), No. 6, p. 1548. doi: 10.2320/matertrans.MER2008168
      [38]
      K. Eguchi, T.L. Burnett, and D.L. Engelberg, X-ray tomographic characterisation of pitting corrosion in lean duplex stainless steel, Corros. Sci., 165(2020), art. No. 108406. doi: 10.1016/j.corsci.2019.108406
      [39]
      J. Srinivasan, M.J. McGrath, and R.G. Kelly, Mass transport and electrochemical phenomena influencing the pitting and repassivation of stainless steels in neutral chloride media, ECS Trans., 58(2014), No. 31, p. 1. doi: 10.1149/05831.0001ecst
      [40]
      N.J. Laycock and R.C. Newman, Localised dissolution kinetics, salt films and pitting potentials, Corros. Sci., 39(1997), No. 10-11, p. 1771. doi: 10.1016/S0010-938X(97)00049-8
      [41]
      P. Reccagni, L.H. Guilherme, Q. Lu, M.F. Gittos, and D.L. Engelberg, Reduction of austenite-ferrite galvanic activity in the heat-affected zone of a Gleeble-simulated grade 2205 duplex stainless steel weld, Corros. Sci., 161(2019), art. No. 108198. doi: 10.1016/j.corsci.2019.108198
      [42]
      X.Q. Cheng, Y. Wang, X.G. Li, and C.F. Dong, Interaction between austein–ferrite phases on passive performance of 2205 duplex stainless steel, J. Mater. Sci. Technol., 34(2018), No. 11, p. 2140. doi: 10.1016/j.jmst.2018.02.020
      [43]
      X.Q. Cheng, Y. Wang, C.F. Dong, and X.G. Li, The beneficial galvanic effect of the constituent phases in 2205 duplex stainless steel on the passive films formed in a 3.5% NaCl solution, Corros. Sci., 134(2018), p. 122. doi: 10.1016/j.corsci.2018.02.033
      [44]
      C. Örnek, M. Långberg, J. Evertsson, et al., In-situ synchrotron GIXRD study of passive film evolution on duplex stainless steel in corrosive environment, Corros. Sci., 141(2018), p. 18. doi: 10.1016/j.corsci.2018.06.040
      [45]
      S.E. Lott and R.C. Alkire, The role of inclusions on initiation of crevice corrosion of stainless steel: I. Experimental studies, J Electrochem. Soc., 136(1989), No. 4, p. 973. doi: 10.1149/1.2096896
      [46]
      J.W. Oldfield and W.H. Sutton, Crevice corrosion of stainless steels: II. experimental studies, Br. Corros. J., 13(1978), No. 3, p. 104. doi: 10.1179/000705978798276258
      [47]
      Q. Hu, G.A. Zhang, Y.B. Qiu, and X.P. Guo, The crevice corrosion behaviour of stainless steel in sodium chloride solution, Corros. Sci., 53(2011), No. 12, p. 4065. doi: 10.1016/j.corsci.2011.08.012
      [48]
      Q. Hu, Y.B. Qiu, X.P. Guo, and J.Y. Huang, Crevice corrosion of Q235 carbon steels in a solution of NaHCO3 and NaCl, Corros. Sci., 52(2010), No. 4, p. 1205. doi: 10.1016/j.corsci.2010.01.006
      [49]
      D.X. Chen, E.H. Han, and X.Q. Wu, Effects of crevice geometry on corrosion behavior of 304 stainless steel during crevice corrosion in high temperature pure water, Corros. Sci., 111(2016), p. 518. doi: 10.1016/j.corsci.2016.04.049
      [50]
      G. Karlberg and G. Wranglen, On the mechanism of crevice corrosion of stainless Cr steels, Corros. Sci., 11(1971), No. 7, p. 499. doi: 10.1016/S0010-938X(71)80017-3
      [51]
      M.H. Moayed, N.J. Laycock, and R.C. Newman, Dependence of the Critical Pitting Temperature on surface roughness, Corros. Sci., 45(2003), No. 6, p. 1203. doi: 10.1016/S0010-938X(02)00215-9
      [52]
      W.M. Tian, S.M. Li, N. Du, S.B. Chen, and Q.Y. Wu, Effects of applied potential on stable pitting of 304 stainless steel, Corros. Sci., 93(2015), p. 242. doi: 10.1016/j.corsci.2015.01.034
      [53]
      N.J. Laycock, M.H. Moayed, and R.C. Newman, Metastable pitting and the critical pitting temperature, J. Electrochem. Soc., 145(1998), No. 8, p. 2622. doi: 10.1149/1.1838691
      [54]
      C. Örnek, F. Léonard, S.A. McDonald, A. Prajapati, P.J. Withers, and D.L. Engelberg, Time-dependent in situ measurement of atmospheric corrosion rates of duplex stainless steel wires, npj Mater. Degrad., 2(2018), art. No. 10. doi: 10.1038/s41529-018-0030-9
      [55]
      A.M. Al-Zahrani and H.W. Pickering, IR voltage switch in delayed crevice corrosion and active peak formation detected using a repassivation-type scan, Electrochim. Acta, 50(2005), No. 16-17, p. 3420. doi: 10.1016/j.electacta.2004.12.017
      [56]
      H.W. Pickering, The role of electrode potential distribution in corrosion processes, Mater. Sci. Eng. A, 198(1995), No. 1-2, p. 213. doi: 10.1016/0921-5093(95)80076-7
      [57]
      G.F. Kennell, R.W. Evitts, and K.L. Heppner, A critical crevice solution and IR drop crevice corrosion model, Corros. Sci., 50(2008), No. 6, p. 1716. doi: 10.1016/j.corsci.2008.02.020
      [58]
      H.W. Pickering, The significance of the local electrode potential within pits, crevices and cracks, Corros. Sci., 29(1989), No. 2-3, p. 325. doi: 10.1016/0010-938X(89)90039-5
      [59]
      S. Wang and R.C. Newman, Crevice corrosion of type 316L stainless steel in alkaline chloride solutions, Corrosion, 60(2004), No. 5, p. 448. doi: 10.5006/1.3299240
      [60]
      S. Aoki, H. Yakuwa, K. Mitsuhashi, and J. Sakai, Dissolution behavior of α and γ phases of a duplex stainless steel in a simulated crevice solution, ECS Trans., 25(2010), No. 37, p. 17. doi: 10.1149/1.3407544
      [61]
      W.T. Tsai and J.R. Chen, Galvanic corrosion between the constituent phases in duplex stainless steel, Corros. Sci., 49(2007), No. 9, p. 3659. doi: 10.1016/j.corsci.2007.03.035
      [62]
      Y.Q. Zhou, S. Mahmood, and D.L. Engelberg, Application of bipolar electrochemistry to assess the corrosion resistance of solution annealed lean duplex stainless steel, Mater. Des., 232(2023), art. No. 112145. doi: 10.1016/j.matdes.2023.112145
      [63]
      C. Örnek, C. Leygraf, and J.S. Pan, Author Correction: Passive film characterisation of duplex stainless steel using scanning Kelvin probe force microscopy in combination with electrochemical measurements, npj Mater. Degrad., 3(2019), No. 1, art. No. 13. doi: 10.1038/s41529-019-0077-2
      [64]
      G.T. Gaudet, W.T. Mo, T.A. Hatton, et al., Mass transfer and electrochemical kinetic interactions in localized pitting corrosion, Aiche J., 32(1986), No. 6, p. 949. doi: 10.1002/aic.690320605
      [65]
      G.T. Burstein, C. Liu, R.M. Souto, and S.P. Vines, Origins of pitting corrosion, Corros. Eng. Sci. Technol., 39(2004), No. 1, p. 25. doi: 10.1179/147842204225016859
      [66]
      M.K. Cavanaugh, R.G. Buchheit, and N. Birbilis, Modeling the environmental dependence of pit growth using neural network approaches, Corros. Sci., 52(2010), No. 9, p. 3070. doi: 10.1016/j.corsci.2010.05.027
      [67]
      G.S. Frankel, Pitting corrosion of metals: A review of the critical factors, J. Electrochem. Soc., 145(1998), No. 6, p. 2186. doi: 10.1149/1.1838615
      [68]
      Y. Yi, P. Cho, A. Al Zaabi, Y. Addad, and C. Jang, Potentiodynamic polarization behaviour of AISI type 316 stainless steel in NaCl solution, Corros. Sci., 74(2013), p. 92. doi: 10.1016/j.corsci.2013.04.028
      [69]
      X.L. Zhang, Z.H. Jiang, Z.P. Yao, Y. Song, and Z.D. Wu, Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density, Corros. Sci., 51(2009), No. 3, p. 581. doi: 10.1016/j.corsci.2008.12.005
      [70]
      M. Ghahari, D. Krouse, N. Laycock, et al., Synchrotron X-ray radiography studies of pitting corrosion of stainless steel: Extraction of pit propagation parameters, Corros. Sci., 100(2015), p. 23. doi: 10.1016/j.corsci.2015.06.023
      [71]
      N.J. Laycock, D.P. Krouse, S.C. Hendy, and D.E. Williams, Computer simulation of pitting corrosion of stainless steels, Electrochem Soc. Interface, 23(2014), No. 4, p. 65. doi: 10.1149/2.F05144IF

    Catalog


    • /

      返回文章
      返回