Cite this article as: |
Yuji Bai, Zhixiu Wang, Bo Jiang, Mengqi Li, Cong Zhu, Xiaotong Gu, and Hai Li, Anisotropy of mechanical properties of 2297-T87 Al–Li alloy thick plates, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2212-2223. https://doi.org/10.1007/s12613-023-2652-3 |
李海 E-mail: Lehigh_73@163.com
[1] |
A.A. El-Aty, Y. Xu, X.Z. Guo, S.H. Zhang, Y. Ma, and D.Y. Chen, Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al–Li alloys: A review, J. Adv. Res., 10(2018), p. 49. doi: 10.1016/j.jare.2017.12.004
|
[2] |
R.J. Rioja and J. Liu, The evolution of Al–Li base products for aerospace and space applications, Metall. Mater. Trans. A, 43(2012), No. 9, p. 3325. doi: 10.1007/s11661-012-1155-z
|
[3] |
A. Deschamps, C. Sigli, T. Mourey, F. de Geuser, W. Lefebvre, and B. Davo, Experimental and modelling assessment of precipitation kinetics in an Al–Li–Mg alloy, Acta Mater., 60(2012), No. 5, p. 1917. doi: 10.1016/j.actamat.2012.01.010
|
[4] |
J. Han, Z.X. Zhu, H.J. Li, and C. Gao, Microstructural evolution, mechanical property and thermal stability of Al–Li 2198-T8 alloy processed by high pressure torsion, Mater. Sci. Eng. A, 651(2016), p. 435. doi: 10.1016/j.msea.2015.10.112
|
[5] |
X.Y. Zhang, T. Huang, W.X. Yang, R.S. Xiao, Z. Liu, and L. Li, Microstructure and mechanical properties of laser beam-welded AA2060 Al–Li alloy, J. Mater. Process. Technol., 237(2016), p. 301. doi: 10.1016/j.jmatprotec.2016.06.021
|
[6] |
J. Goebel, T. Ghidini, and A.J. Graham, Stress-corrosion cracking characterisation of the advanced aerospace Al–Li 2099-T86 alloy, Mater. Sci. Eng. A, 673(2016), p. 16. doi: 10.1016/j.msea.2016.07.013
|
[7] |
Y. Yang, F. Ma, H.B. Hu, Q.M. Zhang, and X.W. Zhang, Microstructure evolution of 2195 Al–Li alloy subjected to high-strain-rate deformation, Mater. Sci. Eng. A, 606(2014), p. 299. doi: 10.1016/j.msea.2014.03.118
|
[8] |
J.C. Williams and E.A. Starke, Progress in structural materials for aerospace systems, Acta Mater., 51(2003), No. 19, p. 5775. doi: 10.1016/j.actamat.2003.08.023
|
[9] |
R.J. Rioja, Fabrication methods to manufacture isotropic Al–Li alloys and products for space and aerospace applications, Mater. Sci. Eng. A, 257(1998), No. 1, p. 100. doi: 10.1016/S0921-5093(98)00827-2
|
[10] |
D.J. Chakrabarti, H. Weiland, B.A. Cheney, and J.T. Staley, Through thickness property variations in 7050 plate, Mater. Sci. Forum, 217-222(1996), p. 1085. doi: 10.4028/www.scientific.net/MSF.217-222.1085
|
[11] |
K.K. Cho, Y.H. Chung, C.W. Lee, S.I. Kwun, and M.C. Shin, Effects of grain shape and texture on the yield strength anisotropy of Al–Li alloy sheet, Scripta Mater., 40(1999), No. 6, p. 651. doi: 10.1016/S1359-6462(98)00481-3
|
[12] |
A. Bois-Brochu, C. Blais, F.A.T. Goma, D. Larouche, J. Boselli, and M. Brochu, Characterization of Al–Li 2099 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties, Mater. Sci. Eng. A, 597(2014), p. 62. doi: 10.1016/j.msea.2013.12.060
|
[13] |
P.F. Wu, Y.L. Deng, J. Zhang, S.T. Fan, and X.M. Zhang, The effect of inhomogeneous microstructures on strength and fatigue properties of an Al–Cu–Li thick plate, Mater. Sci. Eng. A, 731(2018), p. 1. doi: 10.1016/j.msea.2018.06.033
|
[14] |
D. Wang, C. Gao, H.Y. Luo, Y.H. Yang, and Y. Ma, Texture evolution behavior and anisotropy of 2A97 Al–Li alloy during recrystallization at elevated temperature, Rare Met., (2018), p. 1.
|
[15] |
T.Z. Zhao, L. Jin, Y. Xu, and S.H. Zhang, Anisotropic yielding stress of 2198 Al–Li alloy sheet and mechanisms, Mater. Sci. Eng. A, 771(2020), art. No. 138572. doi: 10.1016/j.msea.2019.138572
|
[16] |
X. Xu, M. Hao, J. Chen, et al., Influence of microstructural and crystallographic inhomogeneity on tensile anisotropy in thick-section Al–Li–Cu–Mg plates, Mater. Sci. Eng. A, 829(2022), art. No. 142135. doi: 10.1016/j.msea.2021.142135
|
[17] |
J. Ma, Q. Wang, T.Y. Zhang, H. Cao, Y.B. Yang, and Z.M. Zhang, Effect of natural aging time on tensile and fatigue anisotropy of extruded 7075 Al alloy, J. Mater. Res. Technol., 18(2022), p. 4683. doi: 10.1016/j.jmrt.2022.04.151
|
[18] |
L. Chen, S.W. Yuan, D.M. Kong, G.Q. Zhao, Y.Y. He, and C.S. Zhang, Influence of aging treatment on the microstructure, mechanical properties and anisotropy of hot extruded Al–Mg–Si plate, Mater. Des., 182(2019), art. No. 107999. doi: 10.1016/j.matdes.2019.107999
|
[19] |
G. Huang, Z.H. Li, L.M. Sun, et al., Fatigue crack growth behavior of 2624-T39 aluminum alloy with different grain sizes, Rare Met., 40(2021), No. 9, p. 2523. doi: 10.1007/s12598-020-01496-0
|
[20] |
Z.H. Li, B.Q. Xiong, Y.A. Zhang, B.H. Zhu, F. Wang, and H.W. Liu, Investigation on strength, toughness and microstructure of an Al–Zn–Mg–Cu alloy pre-stretched thick plates in various ageing tempers, J. Mater. Process. Technol., 209(2009), No. 4, p. 2021. doi: 10.1016/j.jmatprotec.2008.04.052
|
[21] |
D. Dumont, A. Deschamps, and Y. Brechet, On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy, Mater. Sci. Eng. A, 356(2003), No. 1-2, p. 326. doi: 10.1016/S0921-5093(03)00145-X
|
[22] |
K. Zhao, J.H. Liu, M. Yu, and S.M. Li, Through-thickness inhomogeneity of precipitate distribution and pitting corrosion behavior of Al–Li alloy thick plate, Trans. Nonferrous Met. Soc. China, 29(2019), No. 9, p. 1793. doi: 10.1016/S1003-6326(19)65087-9
|
[23] |
L. Meng and L. Tian, Stress concentration sensitivity of Al–Li based alloys with various contents of impurities and cerium addition, Mater. Sci. Eng. A, 323(2002), No. 1-2, p. 239. doi: 10.1016/S0921-5093(01)01398-3
|
[24] |
D.D. Risanti, M. Yin, P.E.J.R.D. del Castillo, and S. van der Zwaag, A systematic study of the effect of interrupted ageing conditions on the strength and toughness development of AA6061, Mater. Sci. Eng. A, 523(2009), No. 1-2, p. 99. doi: 10.1016/j.msea.2009.06.044
|
[25] |
A. Albedah, B.B. Bouiadjra, S.M.A.K. Mohammed, and F. Benyahia, Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 83. doi: 10.1007/s12613-019-1896-4
|
[26] |
A.W. Thompson, The relation between changes in ductility and in ductile fracture topography: Control by microvoid nucleation, Acta Metall., 31(1983), No. 10, p. 1517. doi: 10.1016/0001-6160(83)90148-7
|
[27] |
H. Li, Q.Z. Mao, Z.X. Wang, F.F. Miao, B.J. Fang, and Z.Q. Zheng, Enhancing mechanical properties of Al–Mg–Si–Cu sheets by solution treatment substituting for recrystallization annealing before the final cold-rolling, Mater. Sci. Eng. A, 620(2015), p. 204. doi: 10.1016/j.msea.2014.10.012
|
[28] |
C.S. Lee, R.E. Smallman, and B.J. Duggan, Effect of rolling geometry and surface friction on cube texture formation, Mater. Sci. Technol., 10(1994), No. 2, p. 149. doi: 10.1179/mst.1994.10.2.149
|
[29] |
G.J. Li, M.X. Guo, Y. Wang, C.H. Zheng, J.S. Zhang, and L.Z. Zhuang, Effect of Ni addition on microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys with a high Mg/Si ratio, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 740. doi: 10.1007/s12613-019-1778-9
|
[30] |
O. Engler, X.W. Kong, and K. Lücke, Recrystallisation textures of particle-containing Al–Cu and Al–Mn single crystals, Acta Mater., 49(2001), No. 10, p. 1701. doi: 10.1016/S1359-6454(01)00087-8
|
[31] |
M.J. Starink and S.C. Wang, A model for the yield strength of overaged Al–Zn–Mg–Cu alloys, Acta Mater., 51(2003), No. 17, p. 5131. doi: 10.1016/S1359-6454(03)00363-X
|
[32] |
N. Gao, M.J. Starink, L. Davin, A. Cerezo, S.C. Wang, and P.J. Gregson, Microstructure and precipitation in Al–Li–Cu–Mg–(Mn, Zr) alloys, Mater. Sci. Technol., 21(2005), No. 9, p. 1010. doi: 10.1179/174328405X27034
|
[33] |
D.D. Lu, J.F. Li, H. Ning, et al., Effects of microstructure on tensile properties of AA2050-T84 Al−Li alloy, Trans. Nonferrous Met. Soc. China, 31(2021), No. 5, p. 1189. doi: 10.1016/S1003-6326(21)65571-1
|
[34] |
K.S. Kumar, S.A. Brown, and J.R. Pickens, Microstructural evolution during aging of an AlCuLiAgMgZr alloy, Acta Mater., 44(1996), No. 5, p. 1899. doi: 10.1016/1359-6454(95)00319-3
|
[35] |
Y.X. Wang, G.Q. Zhao, X. Xu, X.X. Chen, and W.D. Zhang, Microstructures and mechanical properties of spray deposited 2195 Al–Cu–Li alloy through thermo-mechanical processing, Mater. Sci. Eng. A, 727(2018), p. 78. doi: 10.1016/j.msea.2018.04.116
|
[36] |
B.X. Xie, L. Huang, J.H. Xu, et al., Effect of the aging process and pre-deformation on the precipitated phase and mechanical properties of 2195 Al–Li alloy, Mater. Sci. Eng. A, 832(2022), art. No. 142394. doi: 10.1016/j.msea.2021.142394
|
[37] |
W.B. Lei, X.T. Liu, W.M. Wang, Q. Sun, Y.Z. Xu, and J.Z. Cui, On the influences of Li on the microstructure and properties of hypoeutectic Al–7Si alloy, J. Alloys Compd., 729(2017), p. 703. doi: 10.1016/j.jallcom.2017.04.295
|
[38] |
D. Tsivoulas, J.D. Robson, C. Sigli, and P.B. Prangnell, Interactions between zirconium and manganese dispersoid-forming elements on their combined addition in Al–Cu–Li alloys, Acta Mater., 60(2012), No. 13-14, p. 5245. doi: 10.1016/j.actamat.2012.06.012
|
[39] |
S.W. Duan, K. Matsuda, T. Wang, and Y. Zou, Microstructures and mechanical properties of a cast Al–Cu–Li alloy during heat treatment procedure, Rare Met., 40(2021), No. 7, p. 1897. doi: 10.1007/s12598-020-01481-7
|
[40] |
X.X. Zhang, X.R. Zhou, T. Hashimoto, et al., Corrosion behaviour of 2A97-T6 Al–Cu–Li alloy: The influence of non-uniform precipitation, Corros. Sci., 132(2018), p. 1. doi: 10.1016/j.corsci.2017.12.010
|
[41] |
G. Yang, Z. Li, Y. Yuan, and Q. Lei, Microstructure, mechanical properties and electrical conductivity of Cu–0.3Mg–0.05Ce alloy processed by equal channel angular pressing and subsequent annealing, J. Alloys Compd., 640(2015), p. 347. doi: 10.1016/j.jallcom.2015.03.218
|
[42] |
I.L. Dillamore, Factors affecting the rolling recrystallisation textures in F.C.C. metals, Acta Metall., 12(1964), No. 9, p. 1005. doi: 10.1016/0001-6160(64)90072-0
|
[43] |
R.E. Smallman and D. Green, The dependence of rolling texture on stacking fault energy, Acta Metall., 12(1964), No. 2, p. 145. doi: 10.1016/0001-6160(64)90182-8
|
[44] |
S. Birosca, F.D. Gioacchino, S. Stekovic, and M. Hardy, A quantitative approach to study the effect of local texture and heterogeneous plastic strain on the deformation micromechanism in RR1000 nickel-based superalloy, Acta Mater., 74(2014), p. 110. doi: 10.1016/j.actamat.2014.04.039
|
[45] |
S. Sun, B.L. Adams, and W.E. King, Observations of lattice curvature near the interface of a deformed aluminium bicrystal, Philos. Mag. A, 80(2000), No. 1, p. 9. doi: 10.1080/01418610008212038
|
[46] |
Q. Zhao, Z.Y. Liu, Y.C. Hu, F.D. Li, C. Luo, and S.S. Li, Texture effect on fatigue crack propagation in aluminium alloys: An overview, Mater. Sci. Technol., 35(2019), No. 15, p. 1789. doi: 10.1080/02670836.2019.1651954
|
[47] |
Z. Cvijović, M. Vratnica, and M. Rakin, Micromechanical modelling of fracture toughness in overaged 7000 alloy forgings, Mater. Sci. Eng. A, 434(2006), No. 1-2, p. 339. doi: 10.1016/j.msea.2006.07.018
|
[48] |
K. Wen, B.Q. Xiong, Y.A. Zhang, et al., Aging precipitation characteristics and tensile properties of Al–Zn–Mg–Cu alloys with different additional Zn contents, Rare Met., 40(2021), No. 8, p. 2160. doi: 10.1007/s12598-020-01495-1
|
[49] |
A. Zindal, J. Jain, R. Prasad, et al., Effect of heat treatment variables on the formation of precipitate free zones (PFZs) in Mg–8Al–0.5Zn alloy, Mater. Charact., 136(2018), p. 175. doi: 10.1016/j.matchar.2017.12.018
|
[50] |
S.P. Lynch, A.R. Wilson, and R.T. Byrnes, Effects of ageing treatments on resistance to intergranular fracture of 8090 Al–Li alloy plate, Mater. Sci. Eng. A, 172(1993), No. 1-2, p. 79. doi: 10.1016/0921-5093(93)90428-H
|