留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(6)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  385
  • HTML全文浏览量:  118
  • PDF下载量:  15
  • 被引次数: 0
Ranran Shi, Wei Lin, Zheng Liu, Junna Xu, Jianlei Kuang, Wenxiu Liu, Qi Wang, and Wenbin Cao, Electromagnetic wave absorption and mechanical properties of SiC nanowire/low-melting-point glass composites sintered at 580°C in air, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1809-1815. https://doi.org/10.1007/s12613-023-2653-2
Cite this article as:
Ranran Shi, Wei Lin, Zheng Liu, Junna Xu, Jianlei Kuang, Wenxiu Liu, Qi Wang, and Wenbin Cao, Electromagnetic wave absorption and mechanical properties of SiC nanowire/low-melting-point glass composites sintered at 580°C in air, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1809-1815. https://doi.org/10.1007/s12613-023-2653-2
引用本文 PDF XML SpringerLink
研究论文

580°C空气气氛烧结制备SiC纳米线/低熔点玻璃复合材料及其电磁波吸收和力学性能


  • 通讯作者:

    匡健磊    E-mail: jlkuang@ustb.edu.cn

    王琦    E-mail: wangqi15@ustb.edu.cn

    曹文斌    E-mail: wbcao@ustb.edu.cn

文章亮点

  • (1) 实现了低温和空气气氛下烧结制备SiC/玻璃复合电磁波吸收材料。
  • (2) 通过调控SiC纳米线的含量,优化了复合材料的电磁波吸收和力学性能。
  • (3) 阐明了SiC/玻璃复合材料的介电损耗和电磁波吸收机制。
  • 碳化硅纳米线是一种优良的高温电磁波吸收材料,在实际应用中它需要与透波基体材料复合来实现应用。然而,它的聚合物基复合材料很难应用于300°C以上的高温;另一方面,它的陶瓷基复合材料通常需在1000°C以上高温和惰性气氛中制备。为了解决上述应用和制备问题,本文设计并制备了一种可在580°C低温和空气气氛烧结的SiC/低熔点玻璃复合材料。研究结果表明:SiC纳米线均匀分布在玻璃基体材料中;由于烧结温度低,SiC纳米线在空气气氛烧结过程中并未发生明显氧化。低熔点玻璃的电磁波吸收能力趋近于0;而由于SiC纳米线的极化损耗和电导损耗的协同作用,以及其一维纳米结构增强作用,复合材料的电磁波吸收和力学性能显著增强。当SiC纳米线填充比例从5wt%增加至20wt%时,复合材料在8.2–12.4 GHz频段的介电损耗和电磁波吸收能力逐步提高。当SiC纳米线填充比例为20wt%,吸收层厚度为2.3 mm时,复合材料的最小反射损耗为−20.2 dB,有效吸收带宽为2.3 GHz;同时,其维氏硬度和抗弯强度分别达到HV 564和213 MPa,比低熔点玻璃分别提高了27.7%和72.8%。本研究为传统的聚合物和陶瓷基复合吸波材料以外,提供了一种新的吸波材料制备思路。
  • Research Article

    Electromagnetic wave absorption and mechanical properties of SiC nanowire/low-melting-point glass composites sintered at 580°C in air

    + Author Affiliations
    • SiC nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix composites are difficult to work at temperatures above 300°C, while their ceramic matrix composites must be prepared above 1000°C in an inert atmosphere. Thus, for addressing the abovementioned problems, SiC/low-melting-point glass composites were well designed and prepared at 580°C in an air atmosphere. Based on the X-ray diffraction results, SiC nanowires were not oxidized during air atmosphere sintering because of the low sintering temperature. Additionally, SiC nanowires were uniformly distributed in the glass matrix material. The composites exhibited good mechanical and EMW absorption properties. As the filling ratio of SiC nanowires increased from 5wt% to 20wt%, the Vickers hardness and flexural strength of the composite reached HV 564 and 213 MPa, which were improved by 27.7% and 72.8%, respectively, compared with the low-melting-point glass. Meanwhile, the dielectric loss and EMW absorption ability of SiC nanowires at 8.2–12.4 GHz were also gradually improved. The dielectric loss ability of low-melting-point glass was close to 0. However, when the filling ratio of SiC nanowires was 20wt%, the composite showed a minimum reflection loss (RL) of −20.2 dB and an effective absorption (RL ≤ −10 dB) bandwidth of 2.3 GHz at an absorber layer thickness of 2.3 mm. The synergistic effect of polarization loss and conductivity loss in SiC nanowires was responsible for this improvement.
    • loading
    • [1]
      Z.G. Gao, K. Yang, Z.H. Zhao, et al., Design principles in MOF-derived electromagnetic wave absorption materials: Review and perspective, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 405. doi: 10.1007/s12613-022-2555-8
      [2]
      S.J. Zhang, J.Y. Li, X.T. Jin, and G.L. Wu, Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 428. doi: 10.1007/s12613-022-2546-9
      [3]
      Z.Z. Shen, J.H. Chen, B. Li, G.Q. Li, Z.J. Zhang, and X.M. Hou, Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials, J. Alloys Compd., 815(2020), art. No. 152388. doi: 10.1016/j.jallcom.2019.152388
      [4]
      P. Feng, H.J. Wei, P. Shang, et al., Enhanced electromagnetic microwave absorption of SiC nanowire-reinforced PDC-SiC ceramics catalysed by rare earth, Ceram. Int., 48(2022), No. 17, p. 24915. doi: 10.1016/j.ceramint.2022.05.145
      [5]
      Y.T. Fan, D. Yang, H. Mei, et al., Tuning SiC nanowires interphase to improve the mechanical and electromagnetic wave absorption properties of SiCf/SiCnw/Si3N4 composites, J. Alloys Compd., 896(2022), art. No. 163017. doi: 10.1016/j.jallcom.2021.163017
      [6]
      P. Zhou, J.H. Chen, M. Liu, P. Jiang, B. Li, and X.M. Hou, Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 804. doi: 10.1007/s12613-017-1464-8
      [7]
      C.C. Dang, Q. Mu, X.B. Xie, et al., Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: A review, Adv. Compos. Hybrid Mater., 5(2022), No. 2, p. 606. doi: 10.1007/s42114-022-00500-8
      [8]
      R. Zhang, C.P. Mu, B.C. Wang, et al., Composites of In/C hexagonal nanorods and graphene nanosheets for high-performance electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 485. doi: 10.1007/s12613-022-2520-6
      [9]
      S.P. Wang, Z.Y. Liu, Q.C. Liu, et al., Promoting the microwave absorption performance of hierarchical CF@NiO/Ni composites via phase and morphology evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 494. doi: 10.1007/s12613-022-2524-2
      [10]
      H. Gao, F. Luo, Q.L. Wen, Y.C. Qing, and W.C. Zhou, Effect of preparation conditions on mechanical, dielectric and microwave absorption properties of SiC fiber/mullite matrix composite, Ceram. Int., 45(2019), No. 9, p. 11625. doi: 10.1016/j.ceramint.2019.03.034
      [11]
      Q. Zhou, X.W. Yin, F. Ye, Z.M. Tang, R. Mo, and L.F. Cheng, High temperature electromagnetic wave absorption properties of SiCf/Si3N4 composite induced by different SiC fibers, Ceram. Int., 45(2019), No. 5, p. 6514. doi: 10.1016/j.ceramint.2018.12.142
      [12]
      Z.W. Ren, W.C. Zhou, Y.C. Qing, et al., Effect of different kinds of SiC fibers on microwave absorption and mechanical properties of SiCf/SiC composites, J. Mater. Sci., 32(2021), No. 21, p. 25668.
      [13]
      X.Y. Lv, F. Ye, L.F. Cheng, and L.T. Zhang, 3D printing “wire-on-sphere” hierarchical SiC nanowires/SiC whiskers foam for efficient high-temperature electromagnetic wave absorption, J. Mater. Sci. Technol., 109(2022), p. 94. doi: 10.1016/j.jmst.2021.08.054
      [14]
      K. Su, Y. Wang, K.X. Hu, et al., Ultralight and high-strength SiCnw@SiC foam with highly efficient microwave absorption and heat insulation properties, ACS Appl. Mater. Interfaces, 13(2021), No. 18, p. 22017. doi: 10.1021/acsami.1c03543
      [15]
      T. Han, R.Y. Luo, G.Y. Cui, and L.Y. Wang, Effect of SiC nanowires on the high-temperature microwave absorption properties of SiCf/SiC composites, J. Eur. Ceram. Soc., 39(2019), No. 5, p. 1743. doi: 10.1016/j.jeurceramsoc.2019.01.018
      [16]
      B. Du, C. He, A.Z. Shui, X.H. Zhang, and C.Q. Hong, Microwave-absorption properties of heterostructural SiC nanowires/SiOC ceramic derived from polysiloxane, Ceram. Int., 45(2019), No. 1, p. 1208. doi: 10.1016/j.ceramint.2018.09.306
      [17]
      Y.P. Dong, X.M. Fan, H.J. Wei, et al., Enhanced electromagnetic wave absorption properties of a novel SiC nanowires reinforced SiO2/3Al2O3·2SiO2 porous ceramic, Ceram. Int., 46(2020), No. 14, p. 22474. doi: 10.1016/j.ceramint.2020.06.006
      [18]
      X.L. Lan, Y.B. Li, and Z.J. Wang, High-temperature electromagnetic wave absorption, mechanical and thermal insulation properties of in situ grown SiC on porous SiC skeleton, Chem. Eng. J., 397(2020), art. No. 125250. doi: 10.1016/j.cej.2020.125250
      [19]
      J.J. Qian, A.Z. Shui, C. He, et al., Multifunction properties of SiOC reinforced with carbon fiber and in situ SiC nanowires, Ceram. Int., 47(2021), No. 6, p. 8004. doi: 10.1016/j.ceramint.2020.11.153
      [20]
      X. Li, X.K. Lu, M.H. Li, et al., A SiC nanowires/Ba0.75Sr0.25Al2Si2O8 ceramic heterojunction for stable electromagnetic absorption under variable-temperature, J. Mater. Sci. Technol., 125(2022), p. 29. doi: 10.1016/j.jmst.2022.02.032
      [21]
      L. Xia, X.Y. Zhang, Y.N. Yang, et al., Enhanced electromagnetic wave absorption properties of laminated SiCNW–Cf/lithium–aluminum–silicate (LAS) composites, J. Alloys Compd., 748(2018), p. 154. doi: 10.1016/j.jallcom.2018.03.044
      [22]
      W.B. Li, M.H. Chen, M.Y. Wu, S.L. Zhu, C. Wang, and F.H. Wang, Microstructure and oxidation behavior of a SiC–Al2O3–glass composite coating on Ti–47Al–2Cr–2Nb alloy, Corros. Sci., 87(2014), p. 179. doi: 10.1016/j.corsci.2014.06.015
      [23]
      L. Zhang, S.Q. Yang, M.H. Xiao, et al., Influence of silicon carbide nanowires on the properties of Bi–B–Si–Zn–Al glass based low temperature co-fired ceramics, Ceram. Int., 48(2022), No. 17, p. 25382. doi: 10.1016/j.ceramint.2022.05.212
      [24]
      S.H.N. Doo, W.B. Lim, J.S. Lee, C.S. Han, Y.S. Cho, and C.G. Yoo, Silicon carbide whisker-reinforced ceramic tape for high-power components, Int. J. Appl. Ceram. Technol., 11(2014), No. 2, p. 240. doi: 10.1111/ijac.12127
      [25]
      Y.M. Feng, L. Xia, C.H. Ding, et al., Boosted multi-polarization from silicate-glass@rGO doped with modifier cations for superior microwave absorption, J. Colloid Interface Sci., 593(2021), p. 96. doi: 10.1016/j.jcis.2021.03.007
      [26]
      Y.M. Feng, C.Z. Du, D.X. Meng, et al., Aluminosilicate glass–ceramics/reduced graphene oxide composites doped with lithium ions: The microstructure evolution and tuning for target microwave absorption, Ceram. Int., 48(2022), No. 2, p. 2717. doi: 10.1016/j.ceramint.2021.10.058
      [27]
      J.L. Kuang and W.B. Cao, Oxidation behavior of SiC whiskers at 600–1400°C in air, J. Am. Ceram. Soc., 97(2014), No. 9, p. 2698. doi: 10.1111/jace.13096
      [28]
      Q.G. Fu, H. Peng, X.Y. Nan, H.J. Li, and Y.H. Chu, Effect of SiC nanowires on the thermal shock resistance of joint between carbon/carbon composites and Li2O–Al2O3–SiO2 glass ceramics, J. Eur. Ceram. Soc., 34(2014), No. 10, p. 2535. doi: 10.1016/j.jeurceramsoc.2014.03.011
      [29]
      Q.G. Fu, B.L. Jia, H.J. Li, K.Z. Li, and Y.H. Chu, SiC nanowires reinforced MAS joint of SiC coated carbon/carbon composites to LAS glass ceramics, Mater. Sci. Eng. A, 532(2012), p. 255. doi: 10.1016/j.msea.2011.10.088
      [30]
      J.L. Kuang and W.B. Cao, Silicon carbide whiskers: Preparation and high dielectric permittivity, J. Am. Ceram. Soc., 96(2013), No. 9, p. 2877. doi: 10.1111/jace.12393
      [31]
      L. Long, J.X. Xu, H. Luo, P. Xiao, W. Zhou, and Y. Li, Dielectric response and electromagnetic wave absorption of novel macroporous short carbon fibers/mullite composites, J. Am. Ceram. Soc., 103(2020), p. 6869. doi: 10.1111/jace.17401
      [32]
      J.L. Kuang and W.B. Cao, Stacking faults induced high dielectric permittivity of SiC wires, Appl. Phys. Lett., 103(2013), No. 11, art. No. 112906. doi: 10.1063/1.4821036
      [33]
      Z.H. Zhao, L.M. Zhang, and H.J. Wu, Hydro/organo/ionogels: “Controllable” electromagnetic wave absorbers, Adv. Mater., 34(2022), No. 43, art. No. 2205376. doi: 10.1002/adma.202205376
      [34]
      B. Wen, M.S. Cao, Z.L. Hou, et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites, Carbon, 65(2013), p. 124. doi: 10.1016/j.carbon.2013.07.110
      [35]
      M. Zhang, M.S. Cao, J.C. Shu, W.Q. Cao, L. Li, and J. Yuan, Electromagnetic absorber converting radiation for multifunction, Mater. Sci. Eng. R, 145(2021), art. No. 100627. doi: 10.1016/j.mser.2021.100627

    Catalog


    • /

      返回文章
      返回