留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 11
Nov.  2023

图(10)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  770
  • HTML全文浏览量:  229
  • PDF下载量:  57
  • 被引次数: 0
Yumeng Li, Qing Zhao, Xiaohui Mei, Chengjun Liu, Henrik Saxén, and Ron Zevenhoven, Effect of Ca/Mg molar ratio on the calcium-based sorbents, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2182-2190. https://doi.org/10.1007/s12613-023-2657-y
Cite this article as:
Yumeng Li, Qing Zhao, Xiaohui Mei, Chengjun Liu, Henrik Saxén, and Ron Zevenhoven, Effect of Ca/Mg molar ratio on the calcium-based sorbents, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2182-2190. https://doi.org/10.1007/s12613-023-2657-y
引用本文 PDF XML SpringerLink
研究论文

从钢渣浸出液中制备钙基吸附剂:钙镁比的影响



  • 通讯作者:

    赵青    E-mail: zhaoq@smm.neu.edu.cn

文章亮点

  • (1) MgO加入量多或少都不利于提高钙基吸附剂的CO2吸附能力,确定适宜的MgO含量是非常有必要的;
  • (2) 钙基吸附剂的动力学吸附过程存在两个阶段,且第一阶段(反应控制)的活化能低于第二阶段(扩散控制)的活化能;
  • (3) 钙基吸附剂的“自活化”现象提高了吸附剂的CO2吸附能力,从而验证了吸附剂中MgO的骨架支撑作用。
  • 中国的钢铁行业面临着钢渣利用和CO2减排的迫切需求, 而钢渣中的Ca和Mg可以用酸溶液萃取,制备捕集CO2的吸附剂。本文以渣渗滤液为原料,采用共沉淀法制备了钙基吸附剂,其对CO2的初始CO2化学吸附容量为0.40 g/g。此外,本文还研究了Ca/Mg摩尔比对钙基吸附剂的形貌、结构和CO2化学吸附能力的影响。结果表明对CO2吸附能力最佳的吸附剂是Ca/Mg摩尔比为4.2:1的, 证明了氧化镁在钙基吸附剂中的骨架支撑作用。通过Avrami-Erofeev模型研究了钙基吸附剂的化学吸附动力学,发现CO2吸附存在两个过程,且第一阶段(反应控制)的活化能低于第二阶段(扩散控制)的活化能。
  • Research Article

    Effect of Ca/Mg molar ratio on the calcium-based sorbents

    + Author Affiliations
    • Steelmaking industry faces urgent demands for both steel slag utilization and CO2 abatement. Ca and Mg of steel slag can be extracted by acid solution and used to prepare sorbents for CO2 capture. In this work, the calcium-based sorbents were prepared from stainless steel slag leachate by co-precipitation, and the initial CO2 chemisorption capacity of the calcium-based sorbent prepared from steel slag with the Ca and Mg molar ratio of 3.64:1 was 0.40 g/g. Moreover, the effect of Ca/Mg molar ratio on the morphology, structure, and CO2 chemisorption capacity of the calcium-based sorbents were investigated. The results show that the optimal Ca/Mg molar ratio of sorbent for CO2 capture was 4.2:1, and the skeleton support effect of MgO in calcium-based sorbents was determined. Meanwhile, the chemisorption kinetics of the sorbents was studied using the Avrami-Erofeev model. There were two processes of CO2 chemisorption, and the activation energy of the first stage (reaction control) was found to be lower than that of the second stage (diffusion control).
    • loading
    • Supplementary Information-10.1007s12613-023-2657-y.doc
    • [1]
      J. Su, Y.B. Liang, L. Ding, G.S. Zhang, and H. Liu, Research on China’s energy development strategy under carbon neutrality, Bull. Chin. Acad. Sci., 36(2021), No. 9, p. 1001. doi: 10.16418/j.issn.1000-3045.20210727001
      [2]
      W.L. Dong, G.H. Ding, A.J. Xu, et al., Development of CO2 capture and utilization technology in steelmaking plant, Iron Steel Res. Int., (2023). DOI: 10.1007/s42243-023-00927-3
      [3]
      H.X. Zhang, W.Q. Sun, W.D. Li, and G.Y. Ma, A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub, Appl. Energy, 309(2022), art. No. 118485. doi: 10.1016/j.apenergy.2021.118485
      [4]
      L.Y. Liu, H.G. Ji, X.F. Lü, et al., Mitigation of greenhouse gases released from mining activities: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 513. doi: 10.1007/s12613-020-2155-4
      [5]
      J.L. Guo, Y.P. Bao, and M. Wang, Steel slag in China: Treatment, recycling, and management, Waste Manage., 78(2018), p. 318. doi: 10.1016/j.wasman.2018.04.045
      [6]
      H. Matsuura, X. Yang, G. Li, Z. Yuan, and F. Tsukihashi, Recycling of ironmaking and steelmaking slags in Japan and China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 739. doi: 10.1007/s12613-021-2400-5
      [7]
      Z.F. Cui, A.J. Xu, and F.Q. Shang Guan, Low-carbon development strategy analysis of the domestic and foreign steel industry, Chin. J. Eng., 44(2022), No. 9, p. 1496.
      [8]
      A.J. Nathanael, K. Kannaiyan, A.K. Kunhiraman, S. Ramakrishna, and V. Kumaravel, Global opportunities and challenges on net-zero CO2 emissions towards a sustainable future, React. Chem. Eng., 6(2021), No. 12, p. 2226. doi: 10.1039/D1RE00233C
      [9]
      W.Q. Liu, N.W.L. Low, B. Feng, G. Wang, and J.C. Diniz da Costa, Calcium precursors for the production of CaO sorbents for multicycle CO2 capture, Environ. Sci. Technol., 44(2010), No. 2, p. 841. doi: 10.1021/es902426n
      [10]
      T. Witoon, Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent, Ceram. Int., 37(2011), No. 8, p. 3291. doi: 10.1016/j.ceramint.2011.05.125
      [11]
      Y.J. Li, R.Y. Sun, C.T. Liu, H.L. Liu, and C.M. Lu, CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles, Int. J. Greenhouse Gas Control, 9(2012), p. 117. doi: 10.1016/j.ijggc.2012.03.012
      [12]
      Y.J. Li, R.Y. Sun, H.L. Liu, and C.M. Lu, Reactivation properties of carbide slag as a CO2 sorbent during calcination/carbonation cycles, [in] H.Y. Qi and B. Zhao, eds., Cleaner Combustion and Sustainable World, Berlin, 2013, p. 1233.
      [13]
      S.C. Tian, J.G. Jiang, F. Yan, K.M. Li, and X.J. Chen, Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag, Environ. Sci. Technol., 49(2015), No. 12, p. 7464. doi: 10.1021/acs.est.5b00244
      [14]
      S.C. Tian, J.G. Jiang, F. Yan, K.M. Li, X.J. Chen, and V. Manovic, Highly efficient CO2 capture with simultaneous iron and CaO recycling for the iron and steel industry, Green Chem., 18(2016), No. 14, p. 4022. doi: 10.1039/C6GC00400H
      [15]
      M. Broda, A.M. Kierzkowska, and C.R. Müller, Application of the sol–gel technique to develop synthetic calcium-based sorbents with excellent carbon dioxide capture characteristics, ChemSusChem, 5(2012), No. 2, p. 411. doi: 10.1002/cssc.201100468
      [16]
      D. Karami and N. Mahinpey, Highly active CaO-based sorbents for CO2 capture using the precipitation method: Preparation and characterization of the sorbent powder, Ind. Eng. Chem. Res., 51(2012), No. 12, p. 4567. doi: 10.1021/ie2024257
      [17]
      H.C. Chen, C.S. Zhao, Y.J. Li, and X.P. Chen, CO2 capture performance of calcium-based sorbents in a pressurized carbonation/calcination loop, Energy Fuels, 24(2010), No. 10, p. 5751. doi: 10.1021/ef100565d
      [18]
      M. Erans, V. Manovic, and E.J. Anthony, Calcium looping sorbents for CO2 capture, Appl. Energy, 180(2016), p. 722. doi: 10.1016/j.apenergy.2016.07.074
      [19]
      J. Miranda-Pizarro, A. Perejón, J.M. Valverde, P.E. Sánchez-Jiménez, and L.A. Pérez-Maqueda, Use of steel slag for CO2 capture under realistic calcium-looping conditions, RSC Adv., 6(2016), No. 44, p. 37656. doi: 10.1039/C6RA03210A
      [20]
      X.Y. Yan, Y.J. Li, J.L. Zhao, and Z.Y. Wang, Density functional theory study on CO2 adsorption by Ce-promoted CaO in the presence of steam, Energy Fuels, 34(2020), No. 5, p. 6197. doi: 10.1021/acs.energyfuels.0c00972
      [21]
      L.Y. Li, D.L. King, Z.M. Nie, and C. Howard, Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO2 capture, Ind. Eng. Chem. Res., 48(2009), No. 23, p. 10604. doi: 10.1021/ie901166b
      [22]
      S. Rodiah, M. Huljana, J.L. Al Jabbar, C. Ichsan, and H. Marzuki, Silica-rice husk as adsorbent of Cr (VI) ions prepared through sol–gel method, Walisongo J. Chem., 4(2021), No. 1, p. 65. doi: 10.21580/wjc.v4i1.8045
      [23]
      Q. Zhao, C.J. Liu, L.H. Cao, X. Zheng, and M.F. Jiang, Effect of lime on stability of chromium in stainless steel slag, Minerals, 8(2018), No. 10, art. No. 424. doi: 10.3390/min8100424
      [24]
      Q. Zhao, C.J. Liu, L.H. Cao, X. Zheng, and M.F. Jiang, Stability of chromium in stainless steel slag during cooling, Minerals, 8(2018), No. 10, art. No. 445. doi: 10.3390/min8100445
      [25]
      Q. Zhao, C.J. Liu, T.C. Gao, L. Gao, H. Saxén, and R. Zevenhoven, Remediation of stainless steel slag with MnO for CO2 mineralization, Process. Saf. Environ. Prot., 127(2019), p. 1. doi: 10.1016/j.psep.2019.04.025
      [26]
      Q. Zhao, J.Y. Li, K.W. You, and C.J. Liu, Recovery of calcium and magnesium bearing phases from iron- and steelmaking slag for CO2 sequestration, Process. Saf. Environ. Prot., 135(2020), p. 81. doi: 10.1016/j.psep.2019.12.012
      [27]
      Q. Zhao, K. Liu, L.F. Sun, et al., Towards carbon sequestration using stainless steel slag via phase modification and co-extraction of calcium and magnesium, Process. Saf. Environ. Prot., 133(2020), p. 73. doi: 10.1016/j.psep.2019.11.004
      [28]
      L.H. Cao, C.J. Liu, Q. Zhao, and M.F. Jiang, Effect of Al2O3 modification on enrichment and stabilization of chromium in stainless steel slag, J. Iron Steel Res. Int., 24(2017), No. 3, p. 258. doi: 10.1016/S1006-706X(17)30038-9
      [29]
      D.D. Fang, L.H. Zhang, L.J. Zou, and F. Duan, Effect of leaching parameters on the composition of adsorbents derived from steel slag and their CO2 capture characteristics, Greenhouse Gases: Sci. Technol., 11(2021), No. 5, p. 924. doi: 10.1002/ghg.2103
      [30]
      S.F. Wu, Q.H. Li, J.N. Kim, and K. B. Yi, Properties of a nano CaO/Al2O3 CO2 sorbent, Ind. Eng. Chem. res., 47(2008), No. 1, p. 180. doi: 10.1021/ie0704748
      [31]
      M. Broda, A.M. Kierzkowska, and R.C. Muller. Development of highly effective CaO-based, MgO-stabilized CO2 sorbents via a scalable “one-pot” recrystallization technique, Adv. Funct. Mater., 24(2014), No. 36, p. 5753. doi: 10.1002/adfm.201400862
      [32]
      P.Q. Lan and S.F. Wu, Synthesis of a porous nano-CaO/MgO-based CO2 adsorbent, Chem. Eng. Technol., 37(2014), No. 4, p. 580. doi: 10.1002/ceat.201300709
      [33]
      W.Q. Liu, B. Feng, Y.Q. Wu, G.X. Wang, J. Barry, and J.C. Diniz da Costa, Synthesis of sintering-resistant sorbents for CO2 capture, Environ. Sci. Technol., 44(2010), No. 8, p. 3093. doi: 10.1021/es903436v
      [34]
      C. Luo, Y. Zheng, Q.L. Wu, N. Ding, and C. Zheng, Cyclic reaction characters of novel CaO/MgO high temperature CO2 sorbents, J. Eng. Thermophys., 32(2011), No. 11, p. 1957.
      [35]
      M.A. Naeem, A. Armutlulu, Q. Imtiaz, et al., Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents, Nat. Commun., 9(2018), art. No. 2408. doi: 10.1038/s41467-018-04794-5
      [36]
      X.H. Mei, Q. Zhao, Y. Min, C.J. Liu, H. Saxén, and R. Zevenhoven, Phase transition and dissolution behavior of Ca/Mg-bearing silicates of steel slag in acidic solutions for integration with carbon sequestration, Process. Saf. Environ. Prot., 159(2022), p. 221. doi: 10.1016/j.psep.2021.12.062
      [37]
      X.H. Mei, Q. Zhao, J.Y. Zhou, et al., Phase transition of Ca- and Mg-bearing minerals of steel slag in acidic solution for CO2 sequestration, J. Sustain. Metall., 7(2021), No. 2, p. 391. doi: 10.1007/s40831-021-00374-y
      [38]
      X.H. Mei, Q. Zhao, Y.M. Li, et al., Phase transition and morphology evolution of precipitated calcium carbonate (PCC) in the CO2 mineralization process, Fuel, 328(2022), art. No. 125259. doi: 10.1016/j.fuel.2022.125259
      [39]
      R.J. Ferretti and W.M. Hoffman, Determination of calcium and magnesium in mixed fertilizers by EDTA titration, J. Assoc. Off. Agric. Chem., 45(1962), No. 1, p. 22. doi: doi.org/10.1093/jaoac/45.1.22
      [40]
      C. Luo, Y. Zheng, N. Ding, Q.L. Wu, and C. Zheng, Synthesis and performance of a nano synthetic Ca-based sorbent for high temperature CO2 capture, Proc. CESS, 31(2011), No. 8, p. 45.
      [41]
      H.T. Jang, Y. Park, Y.S. Ko, J.Y. Lee, and B. Margandan, Highly siliceous MCM-48 from rice husk ash for CO2 adsorption, Int. J. Greenhouse Gas Control, 3(2009), No. 5, p. 545. doi: 10.1016/j.ijggc.2009.02.008
      [42]
      W.T. Zeng and H. Bai, Swelling-agent-free synthesis of rice husk derived silica materials with large mesopores for efficient CO2 capture, Chem. Eng. J., 251(2014), p. 1. doi: 10.1016/j.cej.2014.04.041
      [43]
      B. Khoshandam, R.V. Kumar, and L. Allahgholi, Mathematical modeling of CO2 removal using carbonation with CaO: The grain model, Korean J. Chem. Eng., 27(2010), No. 3, p. 766. doi: 10.1007/s11814-010-0119-5
      [44]
      C.Q. Hu, T. Han, Y.Z. Zhang, and Z.X. Zhang, Theoretical foundation of carbonation pellet process for ferrous sludge recycling, J. Iron Steel Res. Int., 18(2011), No. 12, p. 27. doi: 10.1016/S1006-706X(12)60005-3
      [45]
      P.J. Barrie, The mathematical origins of the kinetic compensation effect: 1. the effect of random experimental errors, Phys. Chem. Chem. Phys., 14(2012), No. 1, p. 318. doi: 10.1039/C1CP22666E
      [46]
      P.J. Barrie, The mathematical origins of the kinetic compensation effect: 2. the effect of systematic errors, Phys. Chem. Chem. Phys., 14(2012), No. 1, p. 327. doi: 10.1039/C1CP22667C
      [47]
      V. Manovic and E.J. Anthony, Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles, Environ. Sci. Technol., 42(2008), No. 11, p. 4170. doi: 10.1021/es800152s

    Catalog


    • /

      返回文章
      返回