留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(7)

数据统计

分享

计量
  • 文章访问数:  852
  • HTML全文浏览量:  326
  • PDF下载量:  50
  • 被引次数: 0
Xuan Zhao, Liangxu Xu, Xiaochen Xun, Fangfang Gao, Qingliang Liao, and Yue Zhang, Dynamic behavior of tunneling triboelectric charges in two-dimensional materials, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1801-1808. https://doi.org/10.1007/s12613-023-2659-9
Cite this article as:
Xuan Zhao, Liangxu Xu, Xiaochen Xun, Fangfang Gao, Qingliang Liao, and Yue Zhang, Dynamic behavior of tunneling triboelectric charges in two-dimensional materials, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1801-1808. https://doi.org/10.1007/s12613-023-2659-9
引用本文 PDF XML SpringerLink
研究论文

二维材料隧穿摩擦电荷的动态行为研究


  • 通讯作者:

    廖庆亮    E-mail: liao@ustb.edu.cn

    张跃    E-mail: yuezhang@ustb.edu.cn

文章亮点

  • (1) 系统地研究了多种二维材料(MoS2、WSe2和ZnO)中隧穿摩擦电荷的动态行为。
  • (2) 发现了隧穿摩擦电荷由于受到二维材料的保护,寿命远超传统暴露型摩擦电荷。
  • (3) 证明了隧穿摩擦电荷产生的静电场可以有效调控二维材料的载流子输运性能。
  • 二维材料因其原子尺度的尺寸优势,被认为是后摩尔时代新型逻辑器件的关键材料。目前,主要利用栅极电场控制二维逻辑器件的电输运特性,结构复杂且一旦制造完成便不可更改。如果能够利用摩擦起电产生的静电场代替传统的栅极静电场,有望简化二维电子器件的结构,并根据实际需要随时重新配置。然而,传统暴露型摩擦电荷的寿命仅为几分钟,如何构筑稳定的摩擦电浮栅,并用以控制二维逻辑器件的电输运特性仍有待研究。本文系统研究了多种二维材料(MoS2、WSe2和ZnO)的摩擦起电过程。这三种材料分别为典型的n型、双极型和p型半导体材料。与传统的块状材料不同,二维材料在摩擦后,产生的摩擦电荷可能会穿过二维材料到达下层衬底表面。由于隧穿摩擦电荷受到二维材料的保护,其在基体表面的稳定停留时间可达7天以上,远超传统暴露型摩擦电荷几十分钟的寿命。此外,隧穿摩擦电荷产生的静电场可以有效调控二维材料的载流子输运性能,隧穿摩擦电浮栅调控的场效应器件的源漏电流可提高近60倍。二维材料中的摩擦电荷隧穿现象有望应用于新型二维电子器件和可重构功能电路等领域。
  • Research Article

    Dynamic behavior of tunneling triboelectric charges in two-dimensional materials

    + Author Affiliations
    • Although the research history of triboelectrification has been more than 2000 years, there are still many problems to be solved so far. The use of scanning probe microscopy provides an important way to quantitatively study the transfer, accumulation, and dissipation of triboelectric charges in the process of triboelectrification. Two-dimensional materials are considered to be key materials for new electronic devices in the post-Moore era due to their atomic-scale size advantages. If the electrostatic field generated by triboelectrification can be used to replace the traditional gate electrostatic field, it is expected to simplify the structure of two-dimensional electronic devices and reconfigure them at any time according to actual needs. Here, we investigate the triboelectrification process of various two-dimensional materials such as MoS2, WSe2, and ZnO. Different from traditional bulk materials, after two-dimensional materials are rubbed, the triboelectric charges generated may tunnel through the two-dimensional materials to the underlying substrate surface. Because the tunneling triboelectric charge is protected by the two-dimensional material, its stable residence time on the substrate surface can reach more than 7 days, which is more than tens of minutes for the traditional triboelectric charge. In addition, the electrostatic field generated by the tunneling triboelectric charge can effectively regulate the carrier transport performance of two-dimensional materials, and the source–drain current of the field effect device regulated by the triboelectric floating gate is increased by nearly 60 times. The triboelectric charge tunneling phenomenon in two-dimensional materials is expected to be applied in the fields of new two-dimensional electronic devices and reconfigurable functional circuits.
    • loading
    • [1]
      A.P. Johnson, H.J. Cleaves, J.P. Dworkin, D.P. Glavin, A. Lazcano, and J.L. Bada, The Miller volcanic spark discharge experiment, Science, 322(2008), No. 5900, art. No. 404. doi: 10.1126/science.1161527
      [2]
      H.T. Baytekin, B. Baytekin, T.M. Hermans, B. Kowalczyk, and B.A. Grzybowski, Control of surface charges by radicals as a principle of antistatic polymers protecting electronic circuitry, Science, 341(2013), No. 6152, p. 1368. doi: 10.1126/science.1241326
      [3]
      A. Ohsawa, Brush and propagating brush discharges on insulating sheets in contact with a grounded conductor, J. Electrost., 88(2017), p. 171. doi: 10.1016/j.elstat.2017.01.006
      [4]
      M.Y. Ma, Z. Kang, Q.L. Liao, et al., Development, applications, and future directions of triboelectric nanogenerators, Nano Res., 11(2018), No. 6, p. 2951. doi: 10.1007/s12274-018-1997-9
      [5]
      Y.S. Zhou, Y. Liu, G. Zhu, et al., In situ quantitative study of nanoscale triboelectrification and patterning, Nano Lett., 13(2013), No. 6, p. 2771. doi: 10.1021/nl401006x
      [6]
      L. Tong, Z.R. Peng, R.F. Lin, et al., 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware, Science, 373(2021), No. 6561, p. 1353. doi: 10.1126/science.abg3161
      [7]
      J. Wang, T.F. Fan, J.C. Lu, X.M. Cai, L. Gao, and J.M. Cai, Chemical vapor deposition growth behavior of graphene, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 136. doi: 10.1007/s12613-021-2302-6
      [8]
      H.H. Yu, Z.H. Cao, Z. Zhang, X.K. Zhang, and Y. Zhang, Flexible electronics and optoelectronics of 2D van der Waals materials, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 671. doi: 10.1007/s12613-022-2426-3
      [9]
      Z.Y. Lin, Y. Huang, and X.F. Duan, Van der Waals thin-film electronics, Nat. Electron., 2(2019), No. 9, p. 378. doi: 10.1038/s41928-019-0301-7
      [10]
      V.K. Sangwan and M.C. Hersam, Neuromorphic nanoelectronic materials, Nat. Nanotechnol., 15(2020), No. 7, p. 517. doi: 10.1038/s41565-020-0647-z
      [11]
      Y.T. Zheng, J.J. Wei, J.L. Liu, et al., Carbon materials: The burgeoning promise in electronics, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 404. doi: 10.1007/s12613-021-2358-3
      [12]
      F. Li, R. Tao, B.L. Cao, L. Yang, and Z.G. Wang, Manipulating the light-matter interaction of PtS/MoS2 p-n junctions for high performance broadband photodetection, Adv. Funct. Mater., 31(2021), No. 36, art. No. 2104367. doi: 10.1002/adfm.202104367
      [13]
      J.L. Du, H.H. Yu, B.S. Liu, et al., Strain engineering in 2D material-based flexible optoelectronics, Small Methods, 5(2021), No. 1, art. No. 2000919. doi: 10.1002/smtd.202000919
      [14]
      B.S. Liu, J.L. Du, H.H. Yu, et al., The coupling effect characterization for van der Waals structures based on transition metal dichalcogenides, Nano Res., 14(2021), No. 6, p. 1734. doi: 10.1007/s12274-020-3253-3
      [15]
      Z.M. Ye, C. Tan, X.L. Huang, et al., Emerging MoS2 wafer-scale technique for integrated circuits, Nano-Micro Lett., 15(2023), No. 1, art. No. 38. doi: 10.1007/s40820-022-01010-4
      [16]
      X.K. Zhang, Q.L. Liao, S. Liu, et al., Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode, Nat. Commun., 8(2017), art. No. 15881. doi: 10.1038/ncomms15881
      [17]
      J.L. Du, Q.L. Liao, M.Y. Hong, et al., Piezotronic effect on interfacial charge modulation in mixed-dimensional Van der Waals heterostructure for ultrasensitive flexible photodetectors, Nano Energy, 58(2019), p. 85. doi: 10.1016/j.nanoen.2019.01.024
      [18]
      H.H. Yu, Q.L. Liao, Z. Kang, et al., Atomic-thin ZnO sheet for visible-blind ultraviolet photodetection, Small, 16(2020), No. 47, art. No. 2005520. doi: 10.1002/smll.202005520
      [19]
      L.F. Xue, Z. Zhang, L.X. Xu, et al., Information accessibility oriented self-powered and ripple-inspired fingertip interactors with auditory feedback, Nano Energy, 87(2021), art. No. 106117. doi: 10.1016/j.nanoen.2021.106117
      [20]
      X. Zhao, Z. Zhang, L.X. Xu, et al., Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition, Nano Energy, 85(2021), art. No. 106001. doi: 10.1016/j.nanoen.2021.106001
      [21]
      X. Zhao, Z. Zhang, Q.L. Liao, et al., Self-powered user-interactive electronic skin for programmable touch operation platform, Sci. Adv., 6(2020), No. 28, art. No. eaba4294. doi: 10.1126/sciadv.aba4294
      [22]
      L.H. Han, X. Zhao, M.Y. Ma, et al., Self-powered visualization system by conjunction of photovoltaic effect and contact-electrification, Nano Energy, 57(2019), p. 528. doi: 10.1016/j.nanoen.2018.12.074
      [23]
      S. Kim, T.Y. Kim, K.H. Lee, et al., Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics, Nat. Commun., 8(2017), art. No. 15891. doi: 10.1038/ncomms15891
      [24]
      L. Cheng, Q. Xu, Y.B. Zheng, X.F. Jia, and Y. Qin, A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed, Nat. Commun., 9(2018), No. 1, art. No. 3773. doi: 10.1038/s41467-018-06045-z
      [25]
      Y.S. Zhou, S. Wang, Y. Yang, et al., Manipulating nanoscale contact electrification by an applied electric field, Nano Lett., 14(2014), No. 3, p. 1567. doi: 10.1021/nl404819w

    Catalog


    • /

      返回文章
      返回