Cite this article as: |
Yixiao Xia, Zeyang Kuang, Ping Zhu, Boyu Ju, Guoqin Chen, Ping Wu, Wenshu Yang, and Gaohui Wu, Hot deformation behavior and microstructure evolution of Be/2024Al composites, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2245-2258. https://doi.org/10.1007/s12613-023-2662-1 |
吴平 E-mail: wuping2007ssss@163.com
杨文澍 E-mail: yws001003@163.com
武高辉 E-mail: wugh@hit.edu.cn
[1] |
J. Larose and J.J. Lewandowski, Pressure effects on flow and fracture of Be–Al alloys, Metall. Mater. Trans. A, 33(2002), No. 11, p. 3555. doi: 10.1007/s11661-002-0343-7
|
[2] |
J.Y. Li, Y. Xie, Y.Q. Yang, Z.G. Liu, D.X. Wang, and Y.J. Yin, Research progress of low density and high stiffness of Be–Al alloy fabricated by investment casting, Metals, 12(2022), No. 8, p. 1379. doi: 10.3390/met12081379
|
[3] |
W. Speer and O.S. Es-Said, Applications of an aluminum–beryllium composite for structural aerospace components, Eng. Fail. Anal., 11(2004), No. 6, p. 895. doi: 10.1016/j.engfailanal.2004.02.002
|
[4] |
C.R. Sandin, L.N. Allen, E.G. Amatucci, et al., Materials evaluation for the origins space telescope, J. Astron. Telesc, Instrum. Syst., 7(2021), No. 1, art. No. 011011.
|
[5] |
F.C. Grensing and H. Don, Mechanical and thermal properties of aluminum–beryllium AM162, Adv. Powder. Metall. Part. Mater., (1995), p. 13.
|
[6] |
C. Houska, Beryllium in aluminium and magnesium alloys, Met. Mater., 4(1988), No. 2, p. 100.
|
[7] |
L.B. Yu, W.Y. Wang, B. Su, et al., Characterizations on the microstructure and micro-mechanics of cast Be–Al–0.4Sc–0.4Zr alloy prepared by vacuum induction melting, Mater. Sci. Eng. A, 744(2019), p. 512. doi: 10.1016/j.msea.2018.12.027
|
[8] |
L.B. Yu, J. Wang, F.S. Qu, et al., Effects of scandium addition on microstructure, mechanical and thermal properties of cast Be–Al alloy, J. Alloys Compd., 737(2018), p. 655. doi: 10.1016/j.jallcom.2017.12.117
|
[9] |
F. Contreras, E.A. Trillo, and L.E. Murr, Friction-stir welding of a beryllium–aluminum powder metallurgy alloy, J. Mater. Sci., 37(2002), No. 1, p. 89. doi: 10.1023/A:1013193708743
|
[10] |
S.G. Song, T.J. Garosshen, and V.C. Nardone, Temperature induced worksoftening of Be/Al composite materials, Mater. Sci. Eng. A, 282(2000), No. 1-2, p. 67. doi: 10.1016/S0921-5093(99)00771-6
|
[11] |
G. Schuster and C. Pokross, High-performance Be–Al casting alloys, [in] B.A. Sadler, ed., Light Metals 2013, Springer, Cham, 2016.
|
[12] |
X.D. Liu, P.C. Zhang, S.X. He, Q.D. Xu, Z.Y. Dou, and H.J. Wang, Effect of beryllium content and heat treatment on microstructure and yield strength in Be/6061Al composites, J. Alloys Compd., 743(2018), p. 746. doi: 10.1016/j.jallcom.2018.02.060
|
[13] |
V.C. Nardone and T.J. Garosshen, Evaluation of the tensile and fatigue behaviour of ingot metallurgy beryllium/aluminium alloys, J. Mater. Sci., 32(1997), No. 15, p. 3975. doi: 10.1023/A:1018677102160
|
[14] |
Z.Y. Kuang, W.S. Yang, B.Y. Ju, et al., Achieving ultra-high strength in Be/Al composites by self-exhaust pressure infiltration and hot extrusion process, Mater. Sci. Eng. A, 862(2023), art. No. 144473. doi: 10.1016/j.msea.2022.144473
|
[15] |
G.F. Liu, S.Z. Zhang, L.Q. Chen, and J.X. Qiu, Deformation behavior and microstructural evolution during hot compression of an α + β Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy, Int. J. Miner. Metall. Mater., 18(2011), No. 3, p. 344. doi: 10.1007/s12613-011-0445-6
|
[16] |
A.K. Gupta, V.K. Anirudh, and S.K. Singh, Constitutive models to predict flow stress in austenitic stainless steel 316 at elevated temperatures, Mater. Des., 43(2013), p. 410. doi: 10.1016/j.matdes.2012.07.008
|
[17] |
Y.C. Lin, X.M. Chen, and G. Liu, A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel, Mater. Sci. Eng. A, 527(2010), No. 26, p. 6980. doi: 10.1016/j.msea.2010.07.061
|
[18] |
Y.H. Xiao and C. Guo, Constitutive modelling for high temperature behavior of 1Cr12Ni3Mo2VNbN martensitic steel, Mater. Sci. Eng. A, 528(2011), No. 15, p. 5081. doi: 10.1016/j.msea.2011.03.050
|
[19] |
Y. Liu, M. Li, X.W. Ren, Z.B. Xiao, X.Y. Zhang, and Y.C. Huang, Flow stress prediction of Hastelloy C-276 alloy using modified Zerilli−Armstrong, Johnson−Cook, and Arrhenius-type constitutive models, Trans. Nonferrous Met. Soc. China, 30(2020), No. 11, p. 3031. doi: 10.1016/S1003-6326(20)65440-1
|
[20] |
X. Tan, K. Liu, Z.X. Wang, X.B. Yan, W.S. Yang, and G.H. Wu, Mechanical behavior of deformable particles reinforced Al matrix composites, Mater. Sci. Eng. A, 806(2021), art. No. 140815. doi: 10.1016/j.msea.2021.140815
|
[21] |
P.Z. Shao, G.Q. Chen, B.Y. Ju, et al., Effect of hot extrusion temperature on graphene nanoplatelets reinforced Al6061 composite fabricated by pressure infiltration method, Carbon, 162(2020), p. 455. doi: 10.1016/j.carbon.2020.02.080
|
[22] |
M.S. Khorrami, M. Kazeminezhad, Y. Miyashita, and A.H. Kokabi, Improvement in the mechanical properties of Al/SiC nanocomposites fabricated by severe plastic deformation and friction stir processing, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 297. doi: 10.1007/s12613-017-1408-3
|
[23] |
D.Y. Tian, R. Wang, and J. Zheng, Research on the mechanical properties and hot deformation behaviors of spray-deposited 7034 Al alloy processed by forward extrusion, J. Mater. Eng. Perform., 31(2022), No. 1, p. 37. doi: 10.1007/s11665-021-06166-5
|
[24] |
X.Z. Kai, Y.T. Zhao, A.D. Wang, C.M. Wang, and Z.M. Mao, Hot deformation behavior of in situ nano ZrB2 reinforced 2024Al matrix composite, Compos. Sci. Technol., 116(2015), p. 1. doi: 10.1016/j.compscitech.2015.05.006
|
[25] |
Z. Fang, Y.T. Zhao, X.Z. Kai, et al., Hot deformation behavior of the AA6016 matrix composite reinforced with in situ ZrB2 and Al2O3 nanoparticles, Mater. Res. Express, 7(2020), No. 2, art. No. 026508. doi: 10.1088/2053-1591/ab6e34
|
[26] |
C. Zener and J.H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phys., 15(1944), No. 1, p. 22. doi: 10.1063/1.1707363
|
[27] |
Y. Wang, D.L. Lin, and C.C. Law, A correlation between tensile flow stress and Zener–Hollomon factor in TiAl alloys at high temperatures, J. Mater. Sci. Lett., 19(2000), No. 13, p. 1185. doi: 10.1023/A:1006723629430
|
[28] |
J.J. Jonas, C.M. Sellars, and W.J.M. Tegart, Strength and structure under hot-working conditions, Metall. Rev., 14(1969), No. 1, p. 1. doi: 10.1179/095066069790138056
|
[29] |
L. Zhou, Z.Y. Huang, C.Z. Wang, X.X. Zhang, B.L. Xiao, and Z.Y. Ma, Constitutive flow behaviour and finite element simulation of hot rolling of SiCp/2009Al composite, Mech. Mater., 93(2016), p. 32. doi: 10.1016/j.mechmat.2015.10.010
|
[30] |
S.M. Hao, J.P. Xie, A.Q. Wang, W.Y. Wang, and J.W. Li, Hot deformation behavior and processing map of SiCp/2024Al composite, Rare Met. Mater. Eng., 43(2014), No. 12, p. 2912. doi: 10.1016/S1875-5372(15)60032-7
|
[31] |
K.K. Wang, X.P. Li, Q.L. Li, G.G. Shu, and G.Y. Tang, Hot deformation behavior and microstructural evolution of particulate-reinforced AA6061/B4C composite during compression at elevated temperature, Mater. Sci. Eng. A, 696(2017), p. 248. doi: 10.1016/j.msea.2017.03.013
|
[32] |
S.P. Liu, D.F. Li, and S.L. Guo, Critical conditions of dynamic recrystallization for B4Cp/6061Al composite, Rare Met. Mater. Eng., 46(2017), No. 7, p. 1815. doi: 10.1016/S1875-5372(17)30172-8
|
[33] |
B.Q. Han, K.C. Chan, T.M. Yue, and W.S. Lau, High temperature deformation behavior of Al2124–SiCp composite, J. Mater. Process. Technol., 63(1997), No. 1-3, p. 395. doi: 10.1016/S0924-0136(96)02653-2
|
[34] |
X.P. Li, C.Y. Liu, K. Luo, M.Z. Ma, and R.P. Liu, Hot deformation behaviour of SiC/AA6061 composites prepared by spark plasma sintering, J. Mater. Sci. Technol., 32(2016), No. 4, p. 291.
|
[35] |
Z. Wang, A.Q. Wang, J.P. Xie, and P. Liu, Hot deformation behavior and strain-compensated constitutive equation of nano-sized SiC particle-reinforced Al–Si matrix composites, Materials, 13(2020), No. 8, art. No. 1812. doi: 10.3390/ma13081812
|
[36] |
S.M. Hao, J.P. Xie, A.Q. Wang, W.Y. Wang, and J.W. Li, Hot deformation behavior and power dissipation map of middle volume fraction SiCp/Al composite, Trans. Mater. Heat Treat., 35(2014), No. 3, p. 30.
|
[37] |
K.C. Nayak and P. Date, Development of constitutive relationship for thermomechanical processing of Al–SiC composite eliminating deformation heating, J. Mater. Eng. Perform., 28(2019), p. 5323. doi: 10.1007/s11665-019-04277-8
|
[38] |
A. Rudra, M. Ashiq, S. Das, and R. Dasgupta, Constitutive modeling for predicting high-temperature flow behavior in aluminum 5083 + 10wt pct SiCp composite, Metall. Mater. Trans. B, 50(2019), No. 2, p. 1060. doi: 10.1007/s11663-019-01531-1
|
[39] |
H.T. Chi, Thermal Deformation Behavior and Friction and Wear Property of TiB2p/2024Al Composite [Dissertation], Harbin Institute of Technology, Harbin, 2013, p. 31.
|
[40] |
C.X. Lu, L.M. Wang, W. He, et al., Research progress in preparation process and elasticity modulus of SiC particle reinforced aluminum based composites, Electr. Eng. Mater., 2022, No. 4, p. 6.
|
[41] |
N.N. Song, Z. Gao, Y.Y. Zhang, and X.D. Li, B4C nanoskeleton enabled, flexible lithium–sulfur batteries, Nano Energy, 58(2019), p. 30. doi: 10.1016/j.nanoen.2019.01.018
|
[42] |
J.J. Li, Z.Y. Fu, J.Y. Zhang, et al., Microstructure and mechanical properties of gas pressure sinterning TiB2–Al2O3 multiphase ceramics, J. Chin. Ceram. Soc., 2007, No. 8, p. 973.
|
[43] |
F.X. Cao, K.K. Deng, C.J. Wang, K.B. Nie, W. Liang, and J.F. Fan, Synergistic enhancement of the strength-ductility for stir casting SiCp/2024Al composites by two-step deformation, Met. Mater. Int., 27(2021), No. 12, p. 5450. doi: 10.1007/s12540-020-00928-x
|
[44] |
J.J. Lewandowski and J. Larose, Effects of processing conditions and test temperature on fatigue crack growth and fracture toughness of Be–Al metal matrix composites, Mater. Sci. Eng. A, 344(2003), No. 1-2, p. 215. doi: 10.1016/S0921-5093(02)00391-X
|