留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 11
Nov.  2023

图(21)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  921
  • HTML全文浏览量:  106
  • PDF下载量:  24
  • 被引次数: 0
Yixiao Xia, Zeyang Kuang, Ping Zhu, Boyu Ju, Guoqin Chen, Ping Wu, Wenshu Yang, and Gaohui Wu, Hot deformation behavior and microstructure evolution of Be/2024Al composites, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2245-2258. https://doi.org/10.1007/s12613-023-2662-1
Cite this article as:
Yixiao Xia, Zeyang Kuang, Ping Zhu, Boyu Ju, Guoqin Chen, Ping Wu, Wenshu Yang, and Gaohui Wu, Hot deformation behavior and microstructure evolution of Be/2024Al composites, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2245-2258. https://doi.org/10.1007/s12613-023-2662-1
引用本文 PDF XML SpringerLink
研究论文

Be/2024Al复合材料的热变形行为与微观组织演化


    * 共同第一作者
  • 通讯作者:

    吴平    E-mail: wuping2007ssss@163.com

    杨文澍    E-mail: yws001003@163.com

    武高辉    E-mail: wugh@hit.edu.cn

文章亮点

  • (1) 引入了两种本构模型对Be/2024Al复合材料热变形行为进行预测
  • (2) 实现了对高增强体含量的Be/2024Al复合材料的热变形
  • (3) 研究了热变形中Be颗粒与基体的协调变形行为
  • 现代航空航天对具有高比强度和高比刚度的材料的需求越来越大。Be金属具有高硬度和低密度的特点,铝合金具有可加工可变形的特点,Be/Al复合材料结合了二者的优点,是一种高比强度、高比刚度的复合材料。本文对含Be质量分数为62wt%的Be/2024Al复合材料进行了热压缩实验,变形温度为500–575ºC,变形速率为0.003–0.1 s–1。本文中使用了应变补偿的Arrhenius模型与修正的Johnson–Cook模型来预测Be/2024Al复合材料的变形行为。结果表明Be/2024Al复合材料的变形激活能为363.364 kJ·mol–1。与传统的陶瓷颗粒增强铝基复合材料相比,由于Be颗粒可变形的特性,使得Be/2024Al复合材料即使在超高的增强体含量下也能够实现变形。两个模型的平均相对误差表明,修正的Johnson–Cook模型更适合低温条件,而应变补偿的Arrhenius模型更适合高温条件。本文根据热压缩实验的结果,绘制了Be/2024Al复合材料的热加工图,并且在热加工图的指导下进行了热挤压实验。对比Be/2024Al复合材料挤压前后的微观组织,发现Be颗粒能与Al基体发生协调变形,Be颗粒沿挤压方向伸长。
  • Research Article

    Hot deformation behavior and microstructure evolution of Be/2024Al composites

    + Author Affiliations
    • The high temperature compression test of Be/2024Al composites with 62wt% Be was conducted at 500–575ºC and strain rate of 0.003–0.1 s–1. The strain-compensated Arrhenius model and modified Johnson–Cook model were introduced to predict the hot deformation behavior of Be/2024Al composites. The result shows that the activation energy of Be/2024Al composites was 363.364 kJ·mol–1. Compared with composites reinforced with traditional ceramics, Be/2024Al composites can be deformed with ultra-high content of reinforcement, attributing to the deformable property of Be particles. The average relative error of the two models shows that modified Johnson–Cook model was more suitable for low temperature condition while strain-compensated Arrhenius model was more suitable for high temperature condition. The processing map was generated and a hot extrusion experiment was conducted according to the map. A comparation of the microstructure of Be/2024Al composites before and after extrusion shows that the Be particle deformed coordinately with the matrix and elongated at the extrusion direction.
    • loading
    • [1]
      J. Larose and J.J. Lewandowski, Pressure effects on flow and fracture of Be–Al alloys, Metall. Mater. Trans. A, 33(2002), No. 11, p. 3555. doi: 10.1007/s11661-002-0343-7
      [2]
      J.Y. Li, Y. Xie, Y.Q. Yang, Z.G. Liu, D.X. Wang, and Y.J. Yin, Research progress of low density and high stiffness of Be–Al alloy fabricated by investment casting, Metals, 12(2022), No. 8, p. 1379. doi: 10.3390/met12081379
      [3]
      W. Speer and O.S. Es-Said, Applications of an aluminum–beryllium composite for structural aerospace components, Eng. Fail. Anal., 11(2004), No. 6, p. 895. doi: 10.1016/j.engfailanal.2004.02.002
      [4]
      C.R. Sandin, L.N. Allen, E.G. Amatucci, et al., Materials evaluation for the origins space telescope, J. Astron. Telesc, Instrum. Syst., 7(2021), No. 1, art. No. 011011.
      [5]
      F.C. Grensing and H. Don, Mechanical and thermal properties of aluminum–beryllium AM162, Adv. Powder. Metall. Part. Mater., (1995), p. 13.
      [6]
      C. Houska, Beryllium in aluminium and magnesium alloys, Met. Mater., 4(1988), No. 2, p. 100.
      [7]
      L.B. Yu, W.Y. Wang, B. Su, et al., Characterizations on the microstructure and micro-mechanics of cast Be–Al–0.4Sc–0.4Zr alloy prepared by vacuum induction melting, Mater. Sci. Eng. A, 744(2019), p. 512. doi: 10.1016/j.msea.2018.12.027
      [8]
      L.B. Yu, J. Wang, F.S. Qu, et al., Effects of scandium addition on microstructure, mechanical and thermal properties of cast Be–Al alloy, J. Alloys Compd., 737(2018), p. 655. doi: 10.1016/j.jallcom.2017.12.117
      [9]
      F. Contreras, E.A. Trillo, and L.E. Murr, Friction-stir welding of a beryllium–aluminum powder metallurgy alloy, J. Mater. Sci., 37(2002), No. 1, p. 89. doi: 10.1023/A:1013193708743
      [10]
      S.G. Song, T.J. Garosshen, and V.C. Nardone, Temperature induced worksoftening of Be/Al composite materials, Mater. Sci. Eng. A, 282(2000), No. 1-2, p. 67. doi: 10.1016/S0921-5093(99)00771-6
      [11]
      G. Schuster and C. Pokross, High-performance Be–Al casting alloys, [in] B.A. Sadler, ed., Light Metals 2013, Springer, Cham, 2016.
      [12]
      X.D. Liu, P.C. Zhang, S.X. He, Q.D. Xu, Z.Y. Dou, and H.J. Wang, Effect of beryllium content and heat treatment on microstructure and yield strength in Be/6061Al composites, J. Alloys Compd., 743(2018), p. 746. doi: 10.1016/j.jallcom.2018.02.060
      [13]
      V.C. Nardone and T.J. Garosshen, Evaluation of the tensile and fatigue behaviour of ingot metallurgy beryllium/aluminium alloys, J. Mater. Sci., 32(1997), No. 15, p. 3975. doi: 10.1023/A:1018677102160
      [14]
      Z.Y. Kuang, W.S. Yang, B.Y. Ju, et al., Achieving ultra-high strength in Be/Al composites by self-exhaust pressure infiltration and hot extrusion process, Mater. Sci. Eng. A, 862(2023), art. No. 144473. doi: 10.1016/j.msea.2022.144473
      [15]
      G.F. Liu, S.Z. Zhang, L.Q. Chen, and J.X. Qiu, Deformation behavior and microstructural evolution during hot compression of an α + β Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy, Int. J. Miner. Metall. Mater., 18(2011), No. 3, p. 344. doi: 10.1007/s12613-011-0445-6
      [16]
      A.K. Gupta, V.K. Anirudh, and S.K. Singh, Constitutive models to predict flow stress in austenitic stainless steel 316 at elevated temperatures, Mater. Des., 43(2013), p. 410. doi: 10.1016/j.matdes.2012.07.008
      [17]
      Y.C. Lin, X.M. Chen, and G. Liu, A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel, Mater. Sci. Eng. A, 527(2010), No. 26, p. 6980. doi: 10.1016/j.msea.2010.07.061
      [18]
      Y.H. Xiao and C. Guo, Constitutive modelling for high temperature behavior of 1Cr12Ni3Mo2VNbN martensitic steel, Mater. Sci. Eng. A, 528(2011), No. 15, p. 5081. doi: 10.1016/j.msea.2011.03.050
      [19]
      Y. Liu, M. Li, X.W. Ren, Z.B. Xiao, X.Y. Zhang, and Y.C. Huang, Flow stress prediction of Hastelloy C-276 alloy using modified Zerilli−Armstrong, Johnson−Cook, and Arrhenius-type constitutive models, Trans. Nonferrous Met. Soc. China, 30(2020), No. 11, p. 3031. doi: 10.1016/S1003-6326(20)65440-1
      [20]
      X. Tan, K. Liu, Z.X. Wang, X.B. Yan, W.S. Yang, and G.H. Wu, Mechanical behavior of deformable particles reinforced Al matrix composites, Mater. Sci. Eng. A, 806(2021), art. No. 140815. doi: 10.1016/j.msea.2021.140815
      [21]
      P.Z. Shao, G.Q. Chen, B.Y. Ju, et al., Effect of hot extrusion temperature on graphene nanoplatelets reinforced Al6061 composite fabricated by pressure infiltration method, Carbon, 162(2020), p. 455. doi: 10.1016/j.carbon.2020.02.080
      [22]
      M.S. Khorrami, M. Kazeminezhad, Y. Miyashita, and A.H. Kokabi, Improvement in the mechanical properties of Al/SiC nanocomposites fabricated by severe plastic deformation and friction stir processing, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 297. doi: 10.1007/s12613-017-1408-3
      [23]
      D.Y. Tian, R. Wang, and J. Zheng, Research on the mechanical properties and hot deformation behaviors of spray-deposited 7034 Al alloy processed by forward extrusion, J. Mater. Eng. Perform., 31(2022), No. 1, p. 37. doi: 10.1007/s11665-021-06166-5
      [24]
      X.Z. Kai, Y.T. Zhao, A.D. Wang, C.M. Wang, and Z.M. Mao, Hot deformation behavior of in situ nano ZrB2 reinforced 2024Al matrix composite, Compos. Sci. Technol., 116(2015), p. 1. doi: 10.1016/j.compscitech.2015.05.006
      [25]
      Z. Fang, Y.T. Zhao, X.Z. Kai, et al., Hot deformation behavior of the AA6016 matrix composite reinforced with in situ ZrB2 and Al2O3 nanoparticles, Mater. Res. Express, 7(2020), No. 2, art. No. 026508. doi: 10.1088/2053-1591/ab6e34
      [26]
      C. Zener and J.H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phys., 15(1944), No. 1, p. 22. doi: 10.1063/1.1707363
      [27]
      Y. Wang, D.L. Lin, and C.C. Law, A correlation between tensile flow stress and Zener–Hollomon factor in TiAl alloys at high temperatures, J. Mater. Sci. Lett., 19(2000), No. 13, p. 1185. doi: 10.1023/A:1006723629430
      [28]
      J.J. Jonas, C.M. Sellars, and W.J.M. Tegart, Strength and structure under hot-working conditions, Metall. Rev., 14(1969), No. 1, p. 1. doi: 10.1179/095066069790138056
      [29]
      L. Zhou, Z.Y. Huang, C.Z. Wang, X.X. Zhang, B.L. Xiao, and Z.Y. Ma, Constitutive flow behaviour and finite element simulation of hot rolling of SiCp/2009Al composite, Mech. Mater., 93(2016), p. 32. doi: 10.1016/j.mechmat.2015.10.010
      [30]
      S.M. Hao, J.P. Xie, A.Q. Wang, W.Y. Wang, and J.W. Li, Hot deformation behavior and processing map of SiCp/2024Al composite, Rare Met. Mater. Eng., 43(2014), No. 12, p. 2912. doi: 10.1016/S1875-5372(15)60032-7
      [31]
      K.K. Wang, X.P. Li, Q.L. Li, G.G. Shu, and G.Y. Tang, Hot deformation behavior and microstructural evolution of particulate-reinforced AA6061/B4C composite during compression at elevated temperature, Mater. Sci. Eng. A, 696(2017), p. 248. doi: 10.1016/j.msea.2017.03.013
      [32]
      S.P. Liu, D.F. Li, and S.L. Guo, Critical conditions of dynamic recrystallization for B4Cp/6061Al composite, Rare Met. Mater. Eng., 46(2017), No. 7, p. 1815. doi: 10.1016/S1875-5372(17)30172-8
      [33]
      B.Q. Han, K.C. Chan, T.M. Yue, and W.S. Lau, High temperature deformation behavior of Al2124–SiCp composite, J. Mater. Process. Technol., 63(1997), No. 1-3, p. 395. doi: 10.1016/S0924-0136(96)02653-2
      [34]
      X.P. Li, C.Y. Liu, K. Luo, M.Z. Ma, and R.P. Liu, Hot deformation behaviour of SiC/AA6061 composites prepared by spark plasma sintering, J. Mater. Sci. Technol., 32(2016), No. 4, p. 291.
      [35]
      Z. Wang, A.Q. Wang, J.P. Xie, and P. Liu, Hot deformation behavior and strain-compensated constitutive equation of nano-sized SiC particle-reinforced Al–Si matrix composites, Materials, 13(2020), No. 8, art. No. 1812. doi: 10.3390/ma13081812
      [36]
      S.M. Hao, J.P. Xie, A.Q. Wang, W.Y. Wang, and J.W. Li, Hot deformation behavior and power dissipation map of middle volume fraction SiCp/Al composite, Trans. Mater. Heat Treat., 35(2014), No. 3, p. 30.
      [37]
      K.C. Nayak and P. Date, Development of constitutive relationship for thermomechanical processing of Al–SiC composite eliminating deformation heating, J. Mater. Eng. Perform., 28(2019), p. 5323. doi: 10.1007/s11665-019-04277-8
      [38]
      A. Rudra, M. Ashiq, S. Das, and R. Dasgupta, Constitutive modeling for predicting high-temperature flow behavior in aluminum 5083 + 10wt pct SiCp composite, Metall. Mater. Trans. B, 50(2019), No. 2, p. 1060. doi: 10.1007/s11663-019-01531-1
      [39]
      H.T. Chi, Thermal Deformation Behavior and Friction and Wear Property of TiB2p/2024Al Composite [Dissertation], Harbin Institute of Technology, Harbin, 2013, p. 31.
      [40]
      C.X. Lu, L.M. Wang, W. He, et al., Research progress in preparation process and elasticity modulus of SiC particle reinforced aluminum based composites, Electr. Eng. Mater., 2022, No. 4, p. 6.
      [41]
      N.N. Song, Z. Gao, Y.Y. Zhang, and X.D. Li, B4C nanoskeleton enabled, flexible lithium–sulfur batteries, Nano Energy, 58(2019), p. 30. doi: 10.1016/j.nanoen.2019.01.018
      [42]
      J.J. Li, Z.Y. Fu, J.Y. Zhang, et al., Microstructure and mechanical properties of gas pressure sinterning TiB2–Al2O3 multiphase ceramics, J. Chin. Ceram. Soc., 2007, No. 8, p. 973.
      [43]
      F.X. Cao, K.K. Deng, C.J. Wang, K.B. Nie, W. Liang, and J.F. Fan, Synergistic enhancement of the strength-ductility for stir casting SiCp/2024Al composites by two-step deformation, Met. Mater. Int., 27(2021), No. 12, p. 5450. doi: 10.1007/s12540-020-00928-x
      [44]
      J.J. Lewandowski and J. Larose, Effects of processing conditions and test temperature on fatigue crack growth and fracture toughness of Be–Al metal matrix composites, Mater. Sci. Eng. A, 344(2003), No. 1-2, p. 215. doi: 10.1016/S0921-5093(02)00391-X

    Catalog


    • /

      返回文章
      返回