Cite this article as: |
Miaomiao Chen, Renhai Shi, Zhuangzhuang Liu, Yinghui Li, Qiang Du, Yuhong Zhao, and Jianxin Xie, Phase-field simulation of lack-of-fusion defect and grain growth during laser powder bed fusion of Inconel 718, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2224-2235. https://doi.org/10.1007/s12613-023-2664-z |
石仁海 E-mail: jxxie@mater.ustb.edu.cn
刘壮壮 E-mail: renhai.shi.nick@gmail.com
谢建新 E-mail: liuzhuangzhuang@ustb.edu.cn
Supplementary Information-10.1007s12613-023-2664-z.docx |
[1] |
M.D. Sangid, T.A. Book, D. Naragani, et al., Role of heat treatment and build orientation in the microstructure sensitive deformation characteristics of IN718 produced via SLM additive manufacturing, Addit. Manuf., 22(2018), p. 479.
|
[2] |
S.C. Luo, W.P. Huang, H.H. Yang, J.J. Yang, Z.M. Wang, and X.Y. Zeng, Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments, Addit. Manuf., 30(2019), art. No. 100875.
|
[3] |
H.Z. Deng, L. Wang, Y. Liu, X. Song, F.Q. Meng and S. Huang, Evolution behavior of γ″ phase of IN718 superalloy in temperature/stress coupled field, Int. J. Miner., Metall. Mater., 28(2021), No. 12, p. 1949. doi: 10.1007/s12613-021-2317-z
|
[4] |
E. Hosseini and V.A. Popovich, A review of mechanical properties of additively manufactured Inconel 718, Addit. Manuf., 30(2019), art. No. 100877.
|
[5] |
H.Y. Chen, D.D. Gu, Q. Ge, et al., Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing, Int. J. Miner., Metall. Mater., 28(2021), No. 3, p. 462. doi: 10.1007/s12613-020-2133-x
|
[6] |
N. Li, S. Huang, G.D. Zhang, R.Y. Qin, et al., Progress in additive manufacturing on new materials: A review, J. Mater. Sci. Technol., 35(2019), No. 2, p. 242. doi: 10.1016/j.jmst.2018.09.002
|
[7] |
K. Gruber, W. Stopyra, K. Kobiela, B. Madejski, M. Malicki, and T. Kurzynowski, Mechanical properties of Inconel 718 additively manufactured by laser powder bed fusion after industrial high-temperature heat treatment, J. Manuf. Process., 73(2022), p. 642. doi: 10.1016/j.jmapro.2021.11.053
|
[8] |
M. Zhang, B. Zhang, Y. Wen and X. Qu, Research progress on selective laser melting processing for nickel-based superalloy, Int. J. Miner., Metall. Mater., 29(2022), No. 3, p. 369. doi: 10.1007/s12613-021-2331-1
|
[9] |
F.Y. Lu, H.Y. Wan, X. Ren, L.M. Huang, H.L. Liu, and X. Yi, Mechanical and microstructural characterization of additive manufactured Inconel 718 alloy by selective laser melting and laser metal deposition, J. Iron Steel Res. Int., 29(2022), No. 8, p. 1322. doi: 10.1007/s42243-022-00755-x
|
[10] |
A. Zinoviev, O. Zinovieva, V. Ploshikhin, V. Romanova, and R. Balokhonov, Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method, Mater. Des., 106(2016), p. 321. doi: 10.1016/j.matdes.2016.05.125
|
[11] |
S.Y. Liu, H.Q. Li, C.X. Qin, R. Zong, and X.Y. Fang, The effect of energy density on texture and mechanical anisotropy in selective laser melted Inconel 718, Mater. Des., 191(2020), art. No. 108642. doi: 10.1016/j.matdes.2020.108642
|
[12] |
J.Y. Shao, G. Yu, X.L. He, S.X. Li, R. Chen, and Y. Zhao, Grain size evolution under different cooling rate in laser additive manufacturing of superalloy, Opt. Laser Technol., 119(2019), art. No. 105662. doi: 10.1016/j.optlastec.2019.105662
|
[13] |
H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, and G.P. Zhang, Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting, J. Mater. Sci. Technol., 34(2018), No. 10, p. 1799. doi: 10.1016/j.jmst.2018.02.002
|
[14] |
O. Gokcekaya, T. Ishimoto, S. Hibino, J. Yasutomi, T. Narushima, and T. Nakano, Unique crystallographic texture formation in Inconel 718 by laser powder bed fusion and its effect on mechanical anisotropy, Acta Mater., 212(2021), art. No. 116876. doi: 10.1016/j.actamat.2021.116876
|
[15] |
B. Stegman, A.Y. Shang, L. Hoppenrath, et al., Volumetric energy density impact on mechanical properties of additively manufactured 718 Ni alloy, Mater. Sci. Eng. A, 854(2022), art. No. 143699. doi: 10.1016/j.msea.2022.143699
|
[16] |
Y.C. Wang, J. Shi, and Y. Liu, Competitive grain growth and dendrite morphology evolution in selective laser melting of Inconel 718 superalloy, J. Cryst. Growth, 521(2019), p. 15. doi: 10.1016/j.jcrysgro.2019.05.027
|
[17] |
R. Acharya, J.A. Sharon, and A. Staroselsky, Prediction of microstructure in laser powder bed fusion process, Acta Mater., 124(2017), p. 360. doi: 10.1016/j.actamat.2016.11.018
|
[18] |
M. Yang, L. Wang, and W.T. Yan, Phase-field modeling of grain evolution in additive manufacturing with addition of reinforcing particles, Addit. Manuf., 47(2021), art. No. 102286.
|
[19] |
W.J. Xiao, S.M. Li, C.S. Wang, et al., Multi-scale simulation of dendrite growth for direct energy deposition of nickel-based superalloys, Mater. Des., 164(2019), art. No. 107553. doi: 10.1016/j.matdes.2018.107553
|
[20] |
C. Kumara, A. Segerstark, F.B. Hanning, et al., Microstructure modelling of laser metal powder directed energy deposition of alloy 718, Addit. Manuf., 25(2019), p. 357.
|
[21] |
C. Kumara, A.R. Balachandramurthi, S. Goel, F.B. Hanning, and J. Moverare, Toward a better understanding of phase transformations in additive manufacturing of Alloy 718, Materialia, 13(2020), art. No. 100862. doi: 10.1016/j.mtla.2020.100862
|
[22] |
J.P.M. Cheloni, E.B. Fonseca, A.H.G. Gabriel, and É.S.N. Lopes, The transient temperature field and microstructural evolution of additively manufactured AISI H13 steel supported by finite element analysis, J. Mater. Res. Technol., 19(2022), p. 4583. doi: 10.1016/j.jmrt.2022.06.143
|
[23] |
J. Goldak, A. Chakravarti, and M. Bibby, A new finite element model for welding heat sources, Metall. Trans. B, 15(1984), No. 2, p. 299. doi: 10.1007/BF02667333
|
[24] |
Y.H. Cheng, Numerical Simulation and Experimental Research of Selective Laser Melting on Nickel Based Alloy Powder GH4169 [Dissertation], North University of China, Taiyuan, 2016.
|
[25] |
I. Steinbach, F. Pezzolla, B. Nestler, et al., A phase field concept for multiphase systems, Phys. D, 94(1996), No. 3, p. 135. doi: 10.1016/0167-2789(95)00298-7
|
[26] |
J. Eiken, B. Böttger, and I. Steinbach, Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application, Phys. Rev. E, 73(2006), No. 6Pt2, art. No. 066122.
|
[27] |
I. Steinbach, Phase-field models in materials science, Modell. Simul. Mater. Sci. Eng., 17(2009), No. 7, art. No. 073001. doi: 10.1088/0965-0393/17/7/073001
|
[28] |
Q. Peng, Study on Microstructure and Properties of Nickel-based Superalloy by Selective Laser Melting [Dissertation], University of Science and Technology Beijing, Beijing, 2020.
|
[29] |
M. Zheng, L. Wei, J. Chen, et al., On the role of energy input in the surface morphology and microstructure during selective laser melting of Inconel 718 alloy, J. Mater. Res. Technol., 11(2021), p. 392. doi: 10.1016/j.jmrt.2021.01.024
|
[30] |
M. Balbaa, S. Mekhiel, M. Elbestawi, and J. McIsaac, On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses, Mater. Des., 193(2020), art. No. 108818. doi: 10.1016/j.matdes.2020.108818
|
[31] |
W.Q. Wang, S.Y. Wang, X.G. Zhang, F. Chen, Y.X. Xu, and Y.T. Tian, Process parameter optimization for selective laser melting of Inconel 718 superalloy and the effects of subsequent heat treatment on the microstructural evolution and mechanical properties, J. Manuf. Process., 64(2021), p. 530. doi: 10.1016/j.jmapro.2021.02.004
|
[32] |
H.Y. Wang, L. Wang, R. Cui, B.B. Wang, L.S. Luo, and Y.Q. Su, Differences in microstructure and nano-hardness of selective laser melted Inconel 718 single tracks under various melting modes of molten pool, J. Mater. Res. Technol., 9(2020), No. 5, p. 10401. doi: 10.1016/j.jmrt.2020.07.029
|