Cite this article as: |
Jie Wang, Yifeng Yuan, Xianhui Rao, Min’an Yang, Doudou Wang, Ailing Zhang, Yan Chen, Zhaolin Li, and Hailei Zhao, Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1859-1867. https://doi.org/10.1007/s12613-023-2666-x |
赵海雷 E-mail: hlzhao@ustb.edu.cn
Supplementary Information-10.1007s12613-023-2666-x.docx |
[1] |
M. Armand and J.M. Tarascon, Building better batteries, Nature, 451(2008), No. 7179, p. 652. doi: 10.1038/451652a
|
[2] |
J.B. Goodenough and K.S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc., 135(2013), No. 4, p. 1167. doi: 10.1021/ja3091438
|
[3] |
Y.C. Liu, X.B. Liu, T.S. Wang, L.Z. Fan, and L.F. Jiao, Research and application progress on key materials for sodium-ion batteries, Sustainable Energy Fuels, 1(2017), No. 5, p. 986. doi: 10.1039/C7SE00120G
|
[4] |
Q. Jiang, W.Q. Zhang, J.C. Zhao, P.H. Rao, and J.F. Mao, Superior sodium and lithium storage in strongly coupled amorphous Sb2S3 spheres and carbon nanotubes, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1194. doi: 10.1007/s12613-021-2259-5
|
[5] |
C. Vaalma, D. Buchholz, M. Weil, and S. Passerini, A cost and resource analysis of sodium-ion batteries, Nat. Rev. Mater., 3(2018), art. No. 18013. doi: 10.1038/natrevmats.2018.13
|
[6] |
P.K. Nayak, L.T. Yang, W. Brehm, and P. Adelhelm, From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises, Angew. Chem. Int. Ed., 57(2018), No. 1, p. 102. doi: 10.1002/anie.201703772
|
[7] |
J.R. He, A. Bhargav, W. Shin, and A. Manthiram, Stable dendrite-free sodium-sulfur batteries enabled by a localized high-concentration electrolyte, J. Am. Chem. Soc., 143(2021), No. 48, p. 20241. doi: 10.1021/jacs.1c08851
|
[8] |
X.H. Ma, H.L. Chen, and G. Ceder, Electrochemical properties of monoclinic NaMnO2, J. Electrochem. Soc., 158(2011), No. 12, art. No. A1307. doi: 10.1149/2.035112jes
|
[9] |
J. Zhao, L.W. Zhao, N. Dimov, S. Okada, and T. Nishida, Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries, J. Electrochem. Soc., 160(2013), No. 5, p. A3077. doi: 10.1149/2.007305jes
|
[10] |
S. Komaba, C. Takei, T. Nakayama, A. Ogata, and N. Yabuuchi, Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2, Electrochem. Commun., 12(2010), No. 3, p. 355. doi: 10.1016/j.elecom.2009.12.033
|
[11] |
J.S. Chen, L. Wei, A. Mahmood, et al., Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion, Energy Storage Mater., 25(2020), p. 585. doi: 10.1016/j.ensm.2019.09.024
|
[12] |
Y.C. Liu, N. Zhang, F.F. Wang, X.B. Liu, L.F. Jiao, and L.Z. Fan, Approaching the downsizing limit of maricite NaFePO4 toward high-performance cathode for sodium-ion batteries, Adv. Funct. Mater., 28(2018), No. 30, art. No. 1801917. doi: 10.1002/adfm.201801917
|
[13] |
L.N. Zhao, H.L. Zhao, X.Y. Long, Z.L. Li, and Z.H. Du, Superior high-rate and ultralong-lifespan Na3V2(PO4)3@C cathode by enhancing the conductivity both in bulk and on surface, ACS Appl. Mater. Interfaces, 10(2018), No. 42, p. 35963. doi: 10.1021/acsami.8b12055
|
[14] |
J.F. Yang, D.D. Li, X.S. Wang, X.X. Zhang, J. Xu, and J.T. Chen, Constructing micro-nano Na3V2(PO4)3/C architecture for practical high-loading electrode fabrication as superior-rate and ultralong-life sodium ion battery cathode, Energy Storage Mater., 24(2020), p. 694. doi: 10.1016/j.ensm.2019.07.002
|
[15] |
Y.R. Qi, L.Q. Mu, J.M. Zhao, Y.S. Hu, H.Z. Liu, and S. Dai, Superior Na-storage performance of low-temperature-synthesized Na3(VO1−xPO4)2F1+2x (0≤x≤1) nanoparticles for Na-ion batteries, Angew. Chem. Int. Ed., 54(2015), No. 34, p. 9911. doi: 10.1002/anie.201503188
|
[16] |
Z.L. Jian, Y.S. Hu, X.L. Ji, and W. Chen, NASICON-structured materials for energy storage, Adv. Mater., 29(2017), No. 20, art. No. 1601925. doi: 10.1002/adma.201601925
|
[17] |
J.Z. Sheng, H. Zang, C.J. Tang, et al., Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries, Nano Energy, 24(2016), p. 130. doi: 10.1016/j.nanoen.2016.04.021
|
[18] |
Z.Q. Lv, M.X. Ling, H.M. Yi, H.M. Zhang, Q. Zheng, and X.F. Li, Electrode design for high-performance sodium-ion batteries: Coupling nanorod-assembled Na3V2(PO4)3@C microspheres with a 3D conductive charge transport network, ACS Appl. Mater. Interfaces, 12(2020), No. 12, p. 13869. doi: 10.1021/acsami.9b22746
|
[19] |
J.Z. Guo, P.F. Wang, X.L. Wu, et al., High-energy/power and low-temperature cathode for sodium-ion batteries: In situ XRD study and superior full-cell performance, Adv. Mater., 29(2017), No. 33, art. No. 1701968. doi: 10.1002/adma.201701968
|
[20] |
G. Deng, D.L. Chao, Y.W. Guo, et al., Graphene quantum dots-shielded Na3(VO)2(PO4)2F@C nanocuboids as robust cathode for Na-ion battery, Energy Storage Mater., 5(2016), p. 198. doi: 10.1016/j.ensm.2016.07.007
|
[21] |
F. Sauvage, E. Quarez, J.M. Tarascon, and E. Baudrin, Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5, Solid State Sci., 8(2006), No. 10, p. 1215. doi: 10.1016/j.solidstatesciences.2006.05.009
|
[22] |
H.Y. Jin, J. Dong, E. Uchaker, et al., Three dimensional architecture of carbon wrapped multilayer Na3V2O2(PO4)2F nanocubes embedded in graphene for improved sodium ion batteries, J. Mater. Chem. A, 3(2015), No. 34, p. 17563. doi: 10.1039/C5TA03164H
|
[23] |
P.R. Kumar, Y.H. Jung, J.E. Wang, and D.K. Kim, Na3V2O2(PO4)2F–MWCNT nanocomposites as a stable and high rate cathode for aqueous and non-aqueous sodium-ion batteries, J. Power Sources, 324(2016), p. 421. doi: 10.1016/j.jpowsour.2016.05.096
|
[24] |
Y.M. Yin, F.Y. Xiong, C.Y. Pei, et al., Robust three-dimensional graphene skeleton encapsulated Na3V2O2(PO4)2F nanoparticles as a high-rate and long-life cathode of sodium-ion batteries, Nano Energy, 41(2017), p. 452. doi: 10.1016/j.nanoen.2017.09.056
|
[25] |
Y.R. Qi, Z.Z. Tong, J.M. Zhao, et al., Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes, Joule, 2(2018), No. 11, p. 2348. doi: 10.1016/j.joule.2018.07.027
|
[26] |
L.N. Zhao, X.H. Rong, Y.S. Niu, et al., Ostwald ripening tailoring hierarchically porous Na3V2(PO4)2O2F hollow nanospheres for superior high-rate and ultrastable sodium ion storage, Small, 16(2020), No. 48, art. No. 2004925. doi: 10.1002/smll.202004925
|
[27] |
J. Liu, L.L. Zhang, X.Z. Cao, et al., Achieving the stable structure and superior performance of Na3V2(PO4)2O2F cathodes via Na-site regulation, ACS Appl. Energy Mater., 3(2020), No. 8, p. 7649. doi: 10.1021/acsaem.0c01077
|
[28] |
L.J. Yue, C. Peng, C.L. Guo, et al., Na3V2−xFex(PO4)2O2F: An advanced cathode material with ultra-high stability for superior sodium storage, Chem. Eng. J., 441(2022), art. No. 136132. doi: 10.1016/j.cej.2022.136132
|
[29] |
R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst., A32(1976), No. 5, p. 751.
|
[30] |
L.N. Zhao, H.L. Zhao, Z.H. Du, et al., Delicate lattice modulation enables superior Na storage performance of Na3V2(PO4)3 as both an anode and cathode material for sodium-ion batteries: Understanding the role of calcium substitution for vanadium, J. Mater. Chem. A, 7(2019), No. 16, p. 9807. doi: 10.1039/C9TA00869A
|
[31] |
Y.J. Chen, J. Cheng, C. Wang, et al., Simultaneous modified Na2.9V1.9Zr0.1(PO4)3/C@rGO as a superior high rate and ultralong lifespan cathode for symmetric sodium ion batteries, Chem. Eng. J., 413(2021), art. No. 127451. doi: 10.1016/j.cej.2020.127451
|
[32] |
X. Ou, X.H. Liang, C.H. Yang, et al., Mn doped NaV3(PO4)3/C anode with high-rate and long cycle-life for sodium ion batteries, Energy Storage Mater., 12(2018), p. 153. doi: 10.1016/j.ensm.2017.12.007
|
[33] |
X.J. Dong, X.Z. Liu, P.K. Shen, and J.L. Zhu, Phase evolution of VC–VO heterogeneous particles to facilitate sulfur species conversion in Li-S batteries, Adv. Funct. Mater., 33(2023), No. 3, art. No. 2210987. doi: 10.1002/adfm.202210987
|
[34] |
X.L. Jia, L.X. Wei, L.J. Xu, Y.Y. Hu, H.Y. Guo, and Y.J. Li, Nb5+ doped Li1.20Mn0.54Ni0.13Co0.13O2 with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) surface modification as advanced cathode material for Li-ion batteries, J. Alloys Compd., 832(2020), art. No. 154986. doi: 10.1016/j.jallcom.2020.154986
|
[35] |
J. Cheng, Y.J. Chen, S.Q. Sun, et al., Boosting the rate capability and cycle life of Zr-substituted Na3V2(PO4)3/C enwrapped on carbon nanotubes for symmetric Na-ion batteries, Electrochim. Acta, 385(2021), art. No. 138427. doi: 10.1016/j.electacta.2021.138427
|
[36] |
A. Tang, S. Zhang, W.G. Lin, et al., Ternary NASICON-typed Na3.8MnV0.8Zr0.2(PO4)3 cathode with stable Mn2+/Mn3+ redox and fast sodiation/desodiation kinetics for Na-ion batteries, Energy Storage Mater., 58(2023), p. 271. doi: 10.1016/j.ensm.2023.03.024
|
[37] |
S.J. Lim, D.W. Han, D.H. Nam, et al., Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries, J. Mater. Chem. A, 2(2014), No. 46, p. 19623. doi: 10.1039/C4TA03948C
|
[38] |
Y.Y. Qiu, F. Fu, M. Hu, P.K. Shen, and J.L. Zhu, Tailored chemically bonded metal phosphide@carbon nanowire arrays on foam metal as an all-in-one anode for ultrahigh-area-capacity sodium-ion batteries, Chem. Eng. J., 454(2023), art. No. 140402. doi: 10.1016/j.cej.2022.140402
|
[39] |
Y.N. Wang, H. Li, Z.K. Wang, Q.F. Li, C. Lian, and X. He, Progress on failure mechanism of lithium ion battery caused by diffusion induced stress, J. Inorg. Mater., 35(2020), No. 10, art. No. 1071. doi: 10.15541/jim20190622
|
[40] |
B. Lu, Y.C. Song, and J.Q. Zhang, Selection of charge methods for lithium ion batteries by considering diffusion induced stress and charge time, J. Power Sources, 320(2016), p. 104. doi: 10.1016/j.jpowsour.2016.04.079
|
[41] |
K.J. Zhao, M. Pharr, J.J. Vlassak, and Z.G. Suo, Fracture of electrodes in lithium-ion batteries caused by fast charging, J. Appl. Phys., 108(2010), No. 7, art. No. 073517. doi: 10.1063/1.3492617
|