Cite this article as: |
Tao Wang, Weiwei Ye, Yemeng Tong, Naisheng Jiang, and Liyuan Liu, Residual stress measurement and analysis of siliceous slate-containing quartz veins, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2310-2320. https://doi.org/10.1007/s12613-023-2667-9 |
佟业蒙 E-mail: tongyemeng977@163.com
刘力源 E-mail: liuliyuan@ustb.edu.cn
[1] |
L.Y. Liu, H.G. Ji, X.F. Lü, et al., Mitigation of greenhouse gases released from mining activities: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 513. doi: 10.1007/s12613-020-2155-4
|
[2] |
G.R. Holzhausen and A.M. Johnson, The concept of residual stress in rock, Tectonophysics, 58(1979), No. 3-4, p. 237. doi: 10.1016/0040-1951(79)90311-1
|
[3] |
M. Friedman, Residual elastic strain in rocks, Tectonophysics, 15(1972), No. 4, p. 297. doi: 10.1016/0040-1951(72)90093-5
|
[4] |
T.T. Kie, Rockbursts, case records, theory and control, [in] Proceedings of the International Symposium on Engineering in Complex Rock Formations, Pergamon, 1988, p. 32.
|
[5] |
S.H. Tang, Z.J. Wu, and X.H. Chen, Approach to occurrence and mechanism of rockburst in deep underground mines, Chin. J. Rock Mech. Eng., 22(2003), No. 8, p. 1250.
|
[6] |
H. Zhou, F.Z. Meng, C.Q. Zhang, D.W. Hu, F.J. Yang, and J.J. Lu, Analysis of rockburst mechanisms induced by structural planes in deep tunnels, Bull. Eng. Geol. Environ., 74(2015), No. 4, p. 1435. doi: 10.1007/s10064-014-0696-3
|
[7] |
D.I. Varnes and F.T. Lee, Hypothesis of mobilization of residual stress in rock, Geol. Soc. Am. Bull., 83(1972), No. 9, art. No. 2863. doi: 10.1130/0016-7606(1972)83[2863:HOMORS]2.0.CO;2
|
[8] |
L. Müller, Rock Mechanics, Springer-Verlag, Berlin, 1974.
|
[9] |
T.K. Tan and W.F. Kang, Locked in stresses, creep and dilatancy of rocks, and constitutive equations, Rock Mech., 13(1980), No. 1, p. 5. doi: 10.1007/BF01257895
|
[10] |
Z.Q. Yue, Expansion power of compressed micro fluid inclusions as the cause of rockburst, Mech. Eng., 37(2015), No. 3, p. 287.
|
[11] |
O. An, Forecast method for risk area and risk time of large earthquake in the Xianshuihe Fault Zone by superimposing the residual and present stress field, Bull. Inst. Crustal Dynamics, 1(1996), No. 0, p. 59.
|
[12] |
X. Liu, H.S. Geng, H.F. Xu, Y.H. Yang, L.J. Ma, and L. Dong, Experimental study on the influence of locked-in stress on the uniaxial compressive strength and elastic modulus of rocks, Sci. Rep., 10(2020), No. 1, art. No. 17441. doi: 10.1038/s41598-020-74556-1
|
[13] |
W.C. Chen, S.J. Wang, and H.R. Fu, Study advance on basic characteristics and formation causes of rock inner stress, J. Eng. Geol., 26(2018), No. 1, p. 62.
|
[14] |
K. Sekine and K. Hayashi, Residual stress measurements on a quartz vein: A constraint on paleostress magnitude, J. Geophys. Res., 114(2009), No. B1.
|
[15] |
K. Chen, M. Kunz, N. Tamura, and H.R. Wenk, Residual stress preserved in quartz from the San Andreas Fault Observatory at Depth, Geology, 43(2015), No. 3, p. 219. doi: 10.1130/G36443.1
|
[16] |
H.R. Wenk, B.C. Chandler, K. Chen, Y. Li, N. Tamura, and R. Yu, Residual lattice strain in quartzites as a potential palaeo-piezometer, Geophys. J. Int., 222(2020), No. 1, p. 1363.
|
[17] |
R. Weinberger, Y. Eyal, and N. Mortimer, Formation of systematic joints in metamorphic rocks due to release of residual elastic strain energy, Otago Schist, New Zealand, J. Struct. Geol., 32(2010), No. 3, p. 288. doi: 10.1016/j.jsg.2009.12.003
|
[18] |
L.Y. Liu, H.G. Ji, D. Elsworth, S. Zhi, X.F. Lv, and T. Wang, Dual-damage constitutive model to define thermal damage in rock, Int. J. Rock Mech. Min. Sci., 126(2020), art. No. 104185. doi: 10.1016/j.ijrmms.2019.104185
|
[19] |
C. Lu, Y. Lu, X.H. Gou, Y. Zhong, C. Chen, and J.C. Guo, Influence factors of unpropped fracture conductivity of shale, Energy Sci. Eng., 8(2020), No. 6, p. 2024. doi: 10.1002/ese3.645
|
[20] |
D.W. Gentry, Horizontal residual stresses in the vicinity of a Breccia Pipe, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 10(1973), No. 1, p. 19. doi: 10.1016/0148-9062(73)90057-0
|
[21] |
A. De Noni, D. Hotza, V.C. Soler, and E.S. Vilches, Analysis of the development of microscopic residual stresses on quartz particles in porcelain tile, J. Eur. Ceram. Soc., 28(2008), No. 14, p. 2629. doi: 10.1016/j.jeurceramsoc.2008.04.009
|
[22] |
S.R. Kiahosseini and H. Ahmadian, Effect of residual structural strain caused by the addition of Co3O4 nanoparticles on the structural, hardness and magnetic properties of an Al/Co3O4 nanocomposite produced by powder metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 384. doi: 10.1007/s12613-019-1917-3
|
[23] |
T. Sarkar, A.K. Pramanick, T.K. Pal, and A.K. Pramanick, Development of a new coated electrode with low nickel content for welding ductile iron and its response to austempering, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1090. doi: 10.1007/s12613-018-1660-1
|
[24] |
X.M. Yuan, J. Zhang, Y. Lian, et al., Research progress of residual stress determination in magnesium alloys, J. Magnesium Alloys, 6(2018), No. 3, p. 238. doi: 10.1016/j.jma.2018.06.002
|
[25] |
Z.H. Tang, X. Dong, Y.X. Geng, et al., The effect of warm laser shock peening on the thermal stability of compressive residual stress and the hot corrosion resistance of Ni-based single-crystal superalloy, Opt. Laser Technol., 146(2022), art. No. 107556. doi: 10.1016/j.optlastec.2021.107556
|
[26] |
M. Friedman, X-ray analysis of residual elastic strain in quartzose rocks, [in] The 10th U.S. Symposium on Rock Mechanics, Texas, 1968, p.68.
|
[27] |
A. Frischbutter, D. Neov, C. Scheffzük, M. Vrána, and K. Walther, Lattice strain measurements on sandstones under load using neutron diffraction, J. Struct. Geol., 22(2000), No. 11-12, p. 1587. doi: 10.1016/S0191-8141(00)00110-3
|
[28] |
W.C. Chen, S.D. Li, X. Li, S.J. Wang, L.H. He, and S.M. Li, A novel method for determination of rock inner stress based on X-ray and neutron scaterring, J. Eng. Geol., 30(2022), No. 1, p. 223.
|
[29] |
C.Y. Liu, H.L. Luo, H.J. Li, and X.X. Zhang, Formation mechanism and control technology of vein rockburst - A case study of Uzbekistan Kamchik tunnel, Rock Soil Mech., 42(2021), No. 5, p. 1413.
|
[30] |
W.L. Bragg, The structure of some crystals as indicated by their diffraction of X-rays, Proc. R. Soc. London Ser. A, 89(1913), No. 610, p. 248. doi: 10.1098/rspa.1913.0083
|
[31] |
I.C. Noyan and J.B. Cohen, Residual Stress: Measurement by Diffraction and Interpretation, Springer-Verlag, Berlin, 1987.
|
[32] |
C. Palache, J.D. Dana, E.S. Dana, H. Berman, and C. Frondel, The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, John Wiley and Sons, New York, 1944.
|
[33] |
C. Frondel, Secondary Dauphiné twinning in quartz produced by sawing, Am. Mineral., 31(1946), No. 1-2, p. 58.
|
[34] |
C. McGinn, E.A. Miranda, and L.J. Hufford, The effects of quartz Dauphiné twinning on strain localization in a mid-crustal shear zone, J. Struct. Geol., 134(2020), art. No. 103980.
|
[35] |
G.E. Lloyd, Microstructural evolution in a mylonitic quartz simple shear zone: The significant roles of dauphine twinning and misorientation, Flow Process. Faults Shear Zones, 224(2004), p. 39.
|