留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 12
Dec.  2023

图(12)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1633
  • HTML全文浏览量:  329
  • PDF下载量:  62
  • 被引次数: 0
Tao Wang, Weiwei Ye, Yemeng Tong, Naisheng Jiang,  and Liyuan Liu, Residual stress measurement and analysis of siliceous slate-containing quartz veins, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2310-2320. https://doi.org/10.1007/s12613-023-2667-9
Cite this article as:
Tao Wang, Weiwei Ye, Yemeng Tong, Naisheng Jiang,  and Liyuan Liu, Residual stress measurement and analysis of siliceous slate-containing quartz veins, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2310-2320. https://doi.org/10.1007/s12613-023-2667-9
引用本文 PDF XML SpringerLink
研究论文

含石英脉硅质板岩封闭应力测量研究


  • 通讯作者:

    佟业蒙    E-mail: tongyemeng977@163.com

    刘力源    E-mail: liuliyuan@ustb.edu.cn

文章亮点

  • (1) 使用电子背散射衍射和光学显微镜对岩石微观结构进行了表征,并确定了满足X射线衍射封闭应力测量要求的区域
  • (2) 使用携带X射线衍射仪的sin2ϕ方法测量和计算了含硅片岩的石英脉的封闭应力
  • (3) 根据显微观察和封闭应力测试的结果对封闭应力的机制进行了分析
  • 冲击地压等工程地质灾害,一直是影响煤矿生产安全的关键因素,而封闭应力被认为是解释这些地质力学现象的可行方法。本研究通过EBSD及光学显微镜进行岩石微观表征,确定存在满足XRD封闭应力测量要求测区;以岩体正交异性弹性理论为基础,利用X射线衍射仪,对含石英脉硅质板岩样品采用sin2ϕ法测量并计算封闭应力的量值,确定封闭应力的主应力;依据微观测试与封闭应力测试结果相结合分析封闭应力产生机制。主要结论如下:依据微观测试结果分析可得岩石在毫米范围内存在均质、粒径较小区域,满足XRD应力测定统计量要求;含石英脉板岩样品确定石英为标定矿物,获取不同角度ϕφ下(324)晶面衍射图谱,其衍射峰偏移方向具有一致性,证明待测样品存在封闭应力;石英脉XRD测得封闭应力主应力均为压应力,大小在10到33 MPa之间,最大主应力平行脉体走向,最小主应力垂直脉体走向;石英脉中小角晶界及孪晶界含量均较高,分析岩石中应力封存与岩石中矿物晶体非均质特性、塑性变形相关。本文所提出的封闭应力的测量方法可为后续开展不同类型岩石封闭应力的观测和相关研究提供参考。
  • Research Article

    Residual stress measurement and analysis of siliceous slate-containing quartz veins

    + Author Affiliations
    • Engineering geological disasters such as rockburst have always been a critical factor affecting the safety of coal mine production. Thus, residual stress is considered a feasible method to explain these geomechanical phenomena. In this study, electron backscatter diffraction (EBSD) and optical microscopy were used to characterize the rock microcosm. A measuring area that met the requirements of X-ray diffraction (XRD) residual stress measurement was determined to account for the mechanism of rock residual stress. Then, the residual stress of a siliceous slate-containing quartz vein was measured and calculated using the sin2ϕ method equipped with an X-ray diffractometer. Analysis of microscopic test results showed homogeneous areas with small particles within the millimeter range, meeting the requirements of XRD stress measurement statistics. Quartz was determined as the calibration mineral for slate samples containing quartz veins. The diffraction patterns of the (324) crystal plane were obtained under different ϕ and φ. The deviation direction of the diffraction peaks was consistent, indicating that the sample tested had residual stress. In addition, the principal residual stress within the quartz vein measured by XRD was compressive, ranging from 10 to 33 MPa. The maximum principal stress was parallel to the vein trend, whereas the minimum principal stress was perpendicular to the vein trend. Furthermore, the content of the low-angle boundary and twin boundary in the quartz veins was relatively high, which enhances the resistance of the rock mass to deformation and promotes the easy formation of strain concentrations, thereby resulting in residual stress. The proposed method for measuring residual stress can serve as a reference for subsequent observation and related research on residual stress in different types of rocks.
    • loading
    • [1]
      L.Y. Liu, H.G. Ji, X.F. Lü, et al., Mitigation of greenhouse gases released from mining activities: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 513. doi: 10.1007/s12613-020-2155-4
      [2]
      G.R. Holzhausen and A.M. Johnson, The concept of residual stress in rock, Tectonophysics, 58(1979), No. 3-4, p. 237. doi: 10.1016/0040-1951(79)90311-1
      [3]
      M. Friedman, Residual elastic strain in rocks, Tectonophysics, 15(1972), No. 4, p. 297. doi: 10.1016/0040-1951(72)90093-5
      [4]
      T.T. Kie, Rockbursts, case records, theory and control, [in] Proceedings of the International Symposium on Engineering in Complex Rock Formations, Pergamon, 1988, p. 32.
      [5]
      S.H. Tang, Z.J. Wu, and X.H. Chen, Approach to occurrence and mechanism of rockburst in deep underground mines, Chin. J. Rock Mech. Eng., 22(2003), No. 8, p. 1250.
      [6]
      H. Zhou, F.Z. Meng, C.Q. Zhang, D.W. Hu, F.J. Yang, and J.J. Lu, Analysis of rockburst mechanisms induced by structural planes in deep tunnels, Bull. Eng. Geol. Environ., 74(2015), No. 4, p. 1435. doi: 10.1007/s10064-014-0696-3
      [7]
      D.I. Varnes and F.T. Lee, Hypothesis of mobilization of residual stress in rock, Geol. Soc. Am. Bull., 83(1972), No. 9, art. No. 2863. doi: 10.1130/0016-7606(1972)83[2863:HOMORS]2.0.CO;2
      [8]
      L. Müller, Rock Mechanics, Springer-Verlag, Berlin, 1974.
      [9]
      T.K. Tan and W.F. Kang, Locked in stresses, creep and dilatancy of rocks, and constitutive equations, Rock Mech., 13(1980), No. 1, p. 5. doi: 10.1007/BF01257895
      [10]
      Z.Q. Yue, Expansion power of compressed micro fluid inclusions as the cause of rockburst, Mech. Eng., 37(2015), No. 3, p. 287.
      [11]
      O. An, Forecast method for risk area and risk time of large earthquake in the Xianshuihe Fault Zone by superimposing the residual and present stress field, Bull. Inst. Crustal Dynamics, 1(1996), No. 0, p. 59.
      [12]
      X. Liu, H.S. Geng, H.F. Xu, Y.H. Yang, L.J. Ma, and L. Dong, Experimental study on the influence of locked-in stress on the uniaxial compressive strength and elastic modulus of rocks, Sci. Rep., 10(2020), No. 1, art. No. 17441. doi: 10.1038/s41598-020-74556-1
      [13]
      W.C. Chen, S.J. Wang, and H.R. Fu, Study advance on basic characteristics and formation causes of rock inner stress, J. Eng. Geol., 26(2018), No. 1, p. 62.
      [14]
      K. Sekine and K. Hayashi, Residual stress measurements on a quartz vein: A constraint on paleostress magnitude, J. Geophys. Res., 114(2009), No. B1.
      [15]
      K. Chen, M. Kunz, N. Tamura, and H.R. Wenk, Residual stress preserved in quartz from the San Andreas Fault Observatory at Depth, Geology, 43(2015), No. 3, p. 219. doi: 10.1130/G36443.1
      [16]
      H.R. Wenk, B.C. Chandler, K. Chen, Y. Li, N. Tamura, and R. Yu, Residual lattice strain in quartzites as a potential palaeo-piezometer, Geophys. J. Int., 222(2020), No. 1, p. 1363.
      [17]
      R. Weinberger, Y. Eyal, and N. Mortimer, Formation of systematic joints in metamorphic rocks due to release of residual elastic strain energy, Otago Schist, New Zealand, J. Struct. Geol., 32(2010), No. 3, p. 288. doi: 10.1016/j.jsg.2009.12.003
      [18]
      L.Y. Liu, H.G. Ji, D. Elsworth, S. Zhi, X.F. Lv, and T. Wang, Dual-damage constitutive model to define thermal damage in rock, Int. J. Rock Mech. Min. Sci., 126(2020), art. No. 104185. doi: 10.1016/j.ijrmms.2019.104185
      [19]
      C. Lu, Y. Lu, X.H. Gou, Y. Zhong, C. Chen, and J.C. Guo, Influence factors of unpropped fracture conductivity of shale, Energy Sci. Eng., 8(2020), No. 6, p. 2024. doi: 10.1002/ese3.645
      [20]
      D.W. Gentry, Horizontal residual stresses in the vicinity of a Breccia Pipe, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 10(1973), No. 1, p. 19. doi: 10.1016/0148-9062(73)90057-0
      [21]
      A. De Noni, D. Hotza, V.C. Soler, and E.S. Vilches, Analysis of the development of microscopic residual stresses on quartz particles in porcelain tile, J. Eur. Ceram. Soc., 28(2008), No. 14, p. 2629. doi: 10.1016/j.jeurceramsoc.2008.04.009
      [22]
      S.R. Kiahosseini and H. Ahmadian, Effect of residual structural strain caused by the addition of Co3O4 nanoparticles on the structural, hardness and magnetic properties of an Al/Co3O4 nanocomposite produced by powder metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 384. doi: 10.1007/s12613-019-1917-3
      [23]
      T. Sarkar, A.K. Pramanick, T.K. Pal, and A.K. Pramanick, Development of a new coated electrode with low nickel content for welding ductile iron and its response to austempering, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1090. doi: 10.1007/s12613-018-1660-1
      [24]
      X.M. Yuan, J. Zhang, Y. Lian, et al., Research progress of residual stress determination in magnesium alloys, J. Magnesium Alloys, 6(2018), No. 3, p. 238. doi: 10.1016/j.jma.2018.06.002
      [25]
      Z.H. Tang, X. Dong, Y.X. Geng, et al., The effect of warm laser shock peening on the thermal stability of compressive residual stress and the hot corrosion resistance of Ni-based single-crystal superalloy, Opt. Laser Technol., 146(2022), art. No. 107556. doi: 10.1016/j.optlastec.2021.107556
      [26]
      M. Friedman, X-ray analysis of residual elastic strain in quartzose rocks, [in] The 10th U.S. Symposium on Rock Mechanics, Texas, 1968, p.68.
      [27]
      A. Frischbutter, D. Neov, C. Scheffzük, M. Vrána, and K. Walther, Lattice strain measurements on sandstones under load using neutron diffraction, J. Struct. Geol., 22(2000), No. 11-12, p. 1587. doi: 10.1016/S0191-8141(00)00110-3
      [28]
      W.C. Chen, S.D. Li, X. Li, S.J. Wang, L.H. He, and S.M. Li, A novel method for determination of rock inner stress based on X-ray and neutron scaterring, J. Eng. Geol., 30(2022), No. 1, p. 223.
      [29]
      C.Y. Liu, H.L. Luo, H.J. Li, and X.X. Zhang, Formation mechanism and control technology of vein rockburst - A case study of Uzbekistan Kamchik tunnel, Rock Soil Mech., 42(2021), No. 5, p. 1413.
      [30]
      W.L. Bragg, The structure of some crystals as indicated by their diffraction of X-rays, Proc. R. Soc. London Ser. A, 89(1913), No. 610, p. 248. doi: 10.1098/rspa.1913.0083
      [31]
      I.C. Noyan and J.B. Cohen, Residual Stress: Measurement by Diffraction and Interpretation, Springer-Verlag, Berlin, 1987.
      [32]
      C. Palache, J.D. Dana, E.S. Dana, H. Berman, and C. Frondel, The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, John Wiley and Sons, New York, 1944.
      [33]
      C. Frondel, Secondary Dauphiné twinning in quartz produced by sawing, Am. Mineral., 31(1946), No. 1-2, p. 58.
      [34]
      C. McGinn, E.A. Miranda, and L.J. Hufford, The effects of quartz Dauphiné twinning on strain localization in a mid-crustal shear zone, J. Struct. Geol., 134(2020), art. No. 103980.
      [35]
      G.E. Lloyd, Microstructural evolution in a mylonitic quartz simple shear zone: The significant roles of dauphine twinning and misorientation, Flow Process. Faults Shear Zones, 224(2004), p. 39.

    Catalog


    • /

      返回文章
      返回