留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 1
Jan.  2024

图(9)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  480
  • HTML全文浏览量:  147
  • PDF下载量:  60
  • 被引次数: 0
Xin Shao, Qing Liu, Zicheng Xin, Jiangshan Zhang, Tao Zhou,  and Shaoshuai Li, Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and deep neural network, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 106-117. https://doi.org/10.1007/s12613-023-2670-1
Cite this article as:
Xin Shao, Qing Liu, Zicheng Xin, Jiangshan Zhang, Tao Zhou,  and Shaoshuai Li, Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and deep neural network, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 106-117. https://doi.org/10.1007/s12613-023-2670-1
引用本文 PDF XML SpringerLink
研究论文

基于氧平衡机理与深度神经网络的转炉吹氧时间混合预测模型


  • 通讯作者:

    刘青    E-mail: qliu@ustb.edu.cn

文章亮点

  • (1) 系统分析了转炉冶炼过程氧平衡的影响因素并研究了转炉氧平衡机理;
  • (2) 构建并优化了深度神经网络模型,提高了转炉吹氧量预测精度;
  • (3) 融合氧平衡机理模型与深度神经网络模型,开发了转炉吹氧时间混合预测模型。
  • 转炉工序作为炼钢–连铸区段的起始工序,其冶炼周期的大幅波动将严重干扰炼钢–连铸区段的高效调度,阻碍生产的稳定运行。转炉吹氧量是转炉冶炼过程重要的工艺参数之一,对转炉冶炼周期具有直接影响。本文建立了一种基于氧平衡机理(OBM)与深度神经网络(DNN)的转炉吹氧时间混合预测模型。混合模型通过三步法来实现转炉吹氧时间预测。首先,分别优化OBM模型与DNN模型,并应用OBM模型与DNN模型来预测转炉氧气消耗体积;其次,针对OBM模型与DNN模型的预测结果,通过优化求解得到更精准的氧气消耗体积;最后,根据各炉次的转炉供氧强度获得转炉吹氧时间。通过收集自中国某中大型炼钢厂的实际数据对所提混合模型进行了验证,并与多元线性回归模型、氧平衡机理模型以及包括极限学习机、反向传播神经网络和深度神经网络在内的神经网络模型进行了比较。测试结果表明,当采用3个隐含层,各隐含层神经元数为32-16-8,学习率为0.1的网络结构时,所提混合模型具有优于其他模型的性能表现,具备最佳的预测精度与更强的泛化能力。混合模型在±300 m3误差范围内的命中率为96.67%,判定系数(R2)与均方根误差(RMSE)分别为0.6984,150.03 m3;吹氧时间在±0.6 min误差范围内的预测命中率为89.50%,R2与RMSE分别为0.9486,0.3592 min。
  • Research Article

    Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and deep neural network

    + Author Affiliations
    • The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process, which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error ±300 m3 is 96.67%; determination coefficient (R2) and root mean square error (RMSE) are 0.6984 and 150.03 m3, respectively. The oxygen blow time prediction hit ratio within the error ±0.6 min is 89.50%; R2 and RMSE are 0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter.
    • loading
    • [1]
      R.Y. Yin, Theory and Method of Metallurgical Process Integration, 1st ed., Metallurgical Industry Press, Beijing, 2016, p. 102.
      [2]
      Q. Liu, X. Shao, J.P. Yang, and J.S. Zhang, Multiscale modeling and collaborative manufacturing for steelmaking plants, Chin. J. Eng, 43(2021), No. 12, p. 1698.
      [3]
      R.Y. Yin, Review on the study of metallurgical process engineering, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1253. doi: 10.1007/s12613-020-2220-z
      [4]
      Z.J. Xu, Z. Zheng, and X.Q. Gao, Operation optimization of the steel manufacturing process: A brief review, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1274. doi: 10.1007/s12613-021-2273-7
      [5]
      M. Iglesias-Escudero, J. Villanueva-Balsera, F. Ortega-Fernandez, and V. Rodriguez-Montequín, Planning and scheduling with uncertainty in the steel sector: A review, Appl. Sci., 9(2019), No. 13, art. No. 2692. doi: 10.3390/app9132692
      [6]
      D. García-Menéndez, H. Morán-Palacios, F. Ortega-Fernández, and M. Díaz-Piloñeta, Scheduling in continuous steelmaking casting: A systematic review, ISIJ Int., 60(2020), No. 6, p. 1097. doi: 10.2355/isijinternational.ISIJINT-2019-574
      [7]
      Q. Liu, Q. Liu, J.P. Yang, et al., Progress of research on steelmaking-continuous casting production scheduling, Chin. J. Eng., 42(2020), No. 2, p. 144.
      [8]
      S.L. Jiang, M. Liu, J.H. Lin, and H.X. Zhong, A prediction-based online soft scheduling algorithm for the real-world steelmaking-continuous casting production, Knowl. Based Syst., 111(2016), p. 159. doi: 10.1016/j.knosys.2016.08.010
      [9]
      J.Y. Long, Z.Z. Sun, P.M. Pardalos, Y. Bai, S.H. Zhang, and C. Li, A robust dynamic scheduling approach based on release time series forecasting for the steelmaking-continuous casting production, Appl. Soft Comput., 92(2020), art. No. 106271. doi: 10.1016/j.asoc.2020.106271
      [10]
      S.P. Yu, A prediction method for abnormal condition of scheduling plan with operation time delay in steelmaking and continuous casting production process, ISIJ Int., 53(2013), No. 6, p. 1028. doi: 10.2355/isijinternational.53.1028
      [11]
      J.P. Yang, J.S. Zhang, W.D. Guo, S. Gao, and Q. Liu, End-point temperature preset of molten steel in the final refining unit based on an integration of deep neural network and multi-process operation simulation, ISIJ Int., 61(2021), No. 7, p. 2100. doi: 10.2355/isijinternational.ISIJINT-2020-540
      [12]
      I.J. Cox, R.W. Lewis, R.S. Ransing, H. Laszczewski, and G. Berni, Application of neural computing in basic oxygen steelmaking, J. Mater. Process. Technol., 120(2002), No. 1-3, p. 310. doi: 10.1016/S0924-0136(01)01136-0
      [13]
      N. Rajesh, M.R. Khare, and S.K. Pabi, Feed forward neural network for prediction of end-blow oxygen in LD converter steel making, Mater. Res., 13(2010), No. 1, p. 15. doi: 10.1590/S1516-14392010000100005
      [14]
      M. Han and Y. Zhao, Dynamic control model of BOF steelmaking process based on ANFIS and robust relevance vector machine, Expert Syst. Appl., 38(2011), No. 12, p. 14786. doi: 10.1016/j.eswa.2011.05.071
      [15]
      M. Wang, C. Gao, X.G. Ai, B.P. Zhai, and S.L. Li, Hybrid end-point static control model for 80 tons BOF steelmaking, Trans. Indian Inst. Met., 75(2022), No. 9, p. 2281. doi: 10.1007/s12666-022-02603-8
      [16]
      X.L. Ai, Y.S. Wang, and W.M. Tang, Prediction of oxyen blow rate in BP neural network based converter refining, Steelmaking, 29(2013), No. 2, p. 34.
      [17]
      N. Dogan, G.A. Brooks, and M.A. Rhamdhani, Comprehensive model of oxygen steelmaking part 1: Model development and validation, ISIJ Int., 51(2011), No. 7, p. 1086. doi: 10.2355/isijinternational.51.1086
      [18]
      C.G. Shen, C.C. Wang, X.L. Wei, Y. Li, S. van der Zwaag, and W. Xu, Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel, Acta Mater., 179(2019), p. 201. doi: 10.1016/j.actamat.2019.08.033
      [19]
      W.Z. Mu, M. Rahaman, F.L. Rios, J. Odqvist, and P. Hedström, Predicting strain-induced martensite in austenitic steels by combining physical modelling and machine learning, Mater. Des., 197(2021), art. No. 109199. doi: 10.1016/j.matdes.2020.109199
      [20]
      Z.C. Xin, J.S. Zhang, J.G. Zhang, J. Zheng, Y. Jin, and Q. Liu, Predicting temperature of molten steel in LF-refining process using IF-ZCA-DNN model, Metall. Mater. Trans. B, 54(2023), No. 3, p. 1181. doi: 10.1007/s11663-023-02753-0
      [21]
      Y. Li, M. Han, and L.W. Jiang, Blowing oxygen volume calculation model of BOF steelmaking based on oxygen decarburization efficiency prediction, J. Dalian Univ. Technol., 52(2012), No. 5, p. 725.
      [22]
      Z. Wang, Q. Liu, F.M. Xie, et al., Model for prediction of oxygen required in BOF steelmaking, Ironmaking Steelmaking, 39(2012), No. 3, p. 228. doi: 10.1179/1743281211Y.0000000085
      [23]
      S.W. Wu, J. Yang, and G.M. Cao, Prediction of the Charpy V-notch impact energy of low carbon steel using a shallow neural network and deep learning, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1309. doi: 10.1007/s12613-020-2168-z
      [24]
      I. Mohanty, R. Banerjee, A. Santara, S. Kundu, and P. Mitra, Prediction of properties over the length of the coil during thermo-mechanical processing using DNN, Ironmaking Steelmaking, 48(2021), No. 8, p. 953. doi: 10.1080/03019233.2020.1848303
      [25]
      S. Mittal, A survey on modeling and improving reliability of DNN algorithms and accelerators, J. Syst. Archit., 104(2020), art. No. 101689. doi: 10.1016/j.sysarc.2019.101689
      [26]
      F. He, X.Y. Chai, and Z.H. Zhu, Prediction of oxygen-blowing volume in BOF steelmaking process based on BP neural network and incremental learning, High Temp. Mater. Process., 41(2022), No. 1, p. 403. doi: 10.1515/htmp-2022-0035
      [27]
      W.H. Lin, S.Q. Jiao, J.K. Sun, M. Liu, X. Su, and Q. Liu, Modified exponential model for carbon prediction in the end blowing stage of basic oxygen furnace converter, Chin. J. Eng., 42(2020), No. 7, p. 854.
      [28]
      G.H. Li, B. Wang, Q. Liu, et al., A process model for BOF process based on bath mixing degree, Int. J. Miner. Metall. Mater., 17(2010), No. 6, p. 715. doi: 10.1007/s12613-010-0379-4
      [29]
      G.E. Hinton, S. Osindero, and Y.W. Teh, A fast learning algorithm for deep belief nets, Neural Comput., 18(2006), No. 7, p. 1527. doi: 10.1162/neco.2006.18.7.1527
      [30]
      Y. Bengio, Learning Deep Architectures for AI, Now Foundations and Trends, Boston, 2009, p. 44.
      [31]
      S. Shamshirband, M. Fathi, A. Dehzangi, A.T. Chronopoulos, and H. Alinejad-Rokny, A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues, J. Biomed. Inform., 113(2021), art. No. 103627. doi: 10.1016/j.jbi.2020.103627
      [32]
      Y.G. Zhang, Y.L. Xie, Y. Zhang, J.B. Qiu, and S.X. Wu, The adoption of deep neural network (DNN) to the prediction of soil liquefaction based on shear wave velocity, Bull. Eng. Geol. Environ., 80(2021), No. 6, p. 5053. doi: 10.1007/s10064-021-02250-1
      [33]
      S. Liu, X.J. Liu, Q. Lyu, and F.M. Li, Comprehensive system based on a DNN and LSTM for predicting sinter composition, Appl. Soft Comput., 95(2020), art. No. 106574. doi: 10.1016/j.asoc.2020.106574
      [34]
      C.A. Myers and T. Nakagaki, Prediction of nucleation lag time from elemental composition and temperature for iron and steelmaking slags using deep neural networks, ISIJ Int., 59(2019), No. 4, p. 687. doi: 10.2355/isijinternational.ISIJINT-2018-338
      [35]
      R.J. Fruehan, The Making, Shaping and Treating of Steel: Steelmaking and Refining Volume, 11th ed., The AISE Steel Foundation, Pittsburgh, 1998, p. 496.
      [36]
      Z.C. Xin, J.S. Zhang, J. Zheng, Y. Jin, and Q. Liu, A hybrid modeling method based on expert control and deep neural network for temperature prediction of molten steel in LF, ISIJ Int., 62(2022), No. 3, p. 532. doi: 10.2355/isijinternational.ISIJINT-2021-251
      [37]
      J. Schmidhuber, Deep learning in neural networks: An overview, Neural Netw., 61(2015), p. 85. doi: 10.1016/j.neunet.2014.09.003
      [38]
      Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521(2015), No. 7553, p. 436. doi: 10.1038/nature14539

    Catalog


    • /

      返回文章
      返回