留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 8
Aug.  2023

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  710
  • HTML全文浏览量:  249
  • PDF下载量:  65
  • 被引次数: 0
Qiusong Chen, Hailong Zhou, Yunmin Wang, Daolin Wang, Qinli Zhang, and Yikai Liu, Erosion wear at the bend of pipe during tailings slurry transportation: Numerical study considering inlet velocity, particle size and bend angle, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1608-1620. https://doi.org/10.1007/s12613-023-2672-z
Cite this article as:
Qiusong Chen, Hailong Zhou, Yunmin Wang, Daolin Wang, Qinli Zhang, and Yikai Liu, Erosion wear at the bend of pipe during tailings slurry transportation: Numerical study considering inlet velocity, particle size and bend angle, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1608-1620. https://doi.org/10.1007/s12613-023-2672-z
引用本文 PDF XML SpringerLink
研究论文

尾矿浆输送过程中弯管处的冲蚀磨损数值研究:考虑入口速度、颗粒粒径和弯管角度



  • 通讯作者:

    王道林    E-mail: daolinw@csu.edu.cn

文章亮点

  • (1) 构建了尾矿浆管道输送过程中弯管的冲蚀磨损数值模型,并验证了模型的可靠性。
  • (2) 探明了入口速度、颗粒粒径和弯管角度对弯管冲蚀磨损的影响机理、分布规律与影响程度。
  • (3) 拟合了最大冲蚀磨损速率与三种主要影响因素之间的函数关系。
  • 管道水力运输是一种高效、低能耗的固相运输方式,常用于采矿业中的尾矿浆运输环节。而冲蚀磨损是造成尾矿浆管道系统失效的主要原因,尤其在弯管处。与此同时,管道的冲蚀磨损属于多因素影响下的复杂流固耦合作用,鲜有学者对其进行研究。本文结合计算流体力学,粒子追踪以及冲蚀磨损模型,构建弯管处料浆输送数值模型。在验证该模型可靠性的基础上,从粒子动能和入射角度两个方面重点研究了入口速度(1.5–3.0 m·s-1)、颗粒粒径(50–650 μm)以及弯管角度(45°–90°)对弯管处冲蚀磨损的影响。结果表明,在给定的参数范围,料浆在弯管处的最大冲蚀磨损速率随着入口速度和颗粒粒径的增加而呈指数级增长,随着弯管角度的增加先增大后减小,转折点为60°。同时,三个因素对弯管的最大冲蚀磨损速率影响程度为颗粒粒径>入口速度>弯管角度。其中,当入口速度为3.0 m·s-1,颗粒粒径为650 μm,弯管角度为60°时,弯管磨损最为严重,最大冲蚀磨损速率为5.68 × 10-6 kg·m-2·s-1。此外,在颗粒粒径不高于450 μm时,弯管处最大磨损位置在弯管出口附近;颗粒粒径高于450 μm时,弯管处最大磨损位置逐渐由弯管出口向弯管中心偏移。因此,在实际工程中,可以通过降低入口速度、使用较细粒径的尾矿浆来减轻弯管的冲蚀磨损。
  • Research Article

    Erosion wear at the bend of pipe during tailings slurry transportation: Numerical study considering inlet velocity, particle size and bend angle

    + Author Affiliations
    • Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport in the mining industry. Erosion wear (EW) remains the main cause of failure in tailings slurry pipeline systems, particularly at bends. EW is a complex phenomenon influenced by numerous factors, but research in this area has been limited. This study performs numerical simulations of slurry transport at the bend by combining computational fluid dynamics and fluid particle tracking using a wear model. Based on the validation of the feasibility of the model, this work focuses on the effects of coupled inlet velocity (IV) ranging from 1.5 to 3.0 m·s−1, particle size (PS) ranging from 50 to 650 μm, and bend angle (BA) ranging from 45° to 90° on EW at the bend in terms of particle kinetic energy and incidence angle. The results show that the maximum EW rate of the slurry at the bend increases exponentially with IV and PS and first increases and then decreases with the increase in BA with the inflection point at 60° within these parameter ranges. Further comprehensive analysis reveals that the sensitivity level of the three factors to the maximum EW rate is PS > IV > BA, and when IV is 3.0 m/s, PS is 650 μm, and BA is 60°, the bend EW is the most severe, and the maximum EW rate is 5.68 × 10−6 kg·m−2·s−1. In addition, When PS is below or equal to 450 μm, the maximum EW position is mainly at the outlet of the bend. When PS is greater than 450 μm, the maximum EW position shifts toward the center of the bend with the increase in BA. Therefore, EW at the bend can be reduced in practice by reducing IV as much as possible and using small particles.
    • loading
    • Supplementary Information-s12613-023-2672-z.docx
    • [1]
      Q.M. Nguyen, J. Abouezzi, and L. Ristroph, Early turbulence and pulsatile flows enhance diodicity of Tesla’s macrofluidic valve, Nat. Commun., 12(2021), No. 1, art. No. 2884. doi: 10.1038/s41467-021-23009-y
      [2]
      R. Tarodiya and B.K. Gandhi, Hydraulic performance and erosive wear of centrifugal slurry pumps - A review, Powder Technol., 305(2017), p. 27. doi: 10.1016/j.powtec.2016.09.048
      [3]
      Q.S. Chen, S.Y. Sun, Y.M. Wang, Q.L. Zhang, L.M. Zhu, and Y.K. Liu, In-situ remediation of phosphogypsum in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment, Chemosphere, 313(2023), art. No. 137412. doi: 10.1016/j.chemosphere.2022.137412
      [4]
      M.E. Ibrahim and M. Medraj, Prediction and experimental evaluation of the threshold velocity in water droplet erosion, Mater. Des., 213(2022), art. No. 110312. doi: 10.1016/j.matdes.2021.110312
      [5]
      I. Marusic, D. Chandran, A. Rouhi, et al., An energy-efficient pathway to turbulent drag reduction, Nat. Commun., 12(2021), art. No. 5805. doi: 10.1038/s41467-021-26128-8
      [6]
      G. Singh, S. Kumar, and S.K. Mohapatra, Erosion wear in a slurry pipe with multisized coal and bottom-ash slurries, Mater. Today, 4(2017), No. 2, p. 3565.
      [7]
      A.X. Wu, Z. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
      [8]
      D.L. Wang, Q.L. Zhang, Q.S. Chen, C.C. Qi, Y. Feng, and C.C. Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1438. doi: 10.1007/s12613-020-2022-3
      [9]
      A. Uzi, Y. Ben Ami, and A. Levy, Erosion prediction of industrial conveying pipelines, Powder Technol., 309(2017), p. 49. doi: 10.1016/j.powtec.2016.12.087
      [10]
      H.Z. Jiao, W.B. Yang, Z.E. Ruan, J.X. Yu, J.H. Liu, and Y.X. Yang, Microscale mechanism of tailing thickening in metal mines, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1538.
      [11]
      Q.S. Chen, L.M. Zhu, Y.M. Wang, J. Chen, and C.C. Qi, The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO2, Sci. Total Environ., 852(2022), art. No. 158516. doi: 10.1016/j.scitotenv.2022.158516
      [12]
      R.K. Rathore, P.K. Gupta, and N. Kumar, Numerical investigation of zinc tailings slurry flow field in a horizontal pipeline, Mater. Today Proc., 45(2021), p. 2702. doi: 10.1016/j.matpr.2020.11.541
      [13]
      A. Uzi and A. Levy, Energy absorption by the particle and the surface during impact, Wear, 404-405(2018), p. 92. doi: 10.1016/j.wear.2018.03.007
      [14]
      R. Camassa, D.M. Harris, R. Hunt, Z. Kilic, and R.M. McLaughlin, A first-principle mechanism for particulate aggregation and self-assembly in stratified fluids, Nat. Commun., 10(2019), No. 1, art. No. 5804. doi: 10.1038/s41467-019-13643-y
      [15]
      Q.L. Zhang, Y.T. Li, Q.S. Chen, Y.K. Liu, Y. Feng, and D.L. Wang, Effects of temperatures and pH values on rheological properties of cemented paste backfill, J. Cent. South Univ., 28(2021), No. 6, p. 1707. doi: 10.1007/s11771-021-4728-4
      [16]
      S. Dhodapkar, P. Solt, and G. Klinzing, Understanding bends in pneumatic conveying systems, Chem. Eng., 116(2009), p. 53.
      [17]
      S.S. Rajahram, T.J. Harvey, and R.J.K. Wood, Erosion–corrosion resistance of engineering materials in various test conditions, Wear, 267(2009), No. 1-4, p. 244. doi: 10.1016/j.wear.2009.01.052
      [18]
      Y.F. Liu, Y.L. Zhao, and J. Yao, Synergistic erosion-corrosion behavior of X80 pipeline steel at various impingement angles in two-phase flow impingement, Wear, 466-467(2021), art. No. 203572. doi: 10.1016/j.wear.2020.203572
      [19]
      H. Zhou, Q.F. Ji, W. Liu, H.Y. Ma, Y. Lei, and K.Q. Zhu, Experimental study on erosion-corrosion behavior of liquid–solid swirling flow in pipeline, Mater. Des., 214(2022), art. No. 110376. doi: 10.1016/j.matdes.2021.110376
      [20]
      J.H. Wang, T.F. Zhang, and S.G. Wang, Heterogeneous ice slurry flow and concentration distribution in horizontal pipes, Int. J. Heat Fluid Flow, 44(2013), p. 425. doi: 10.1016/j.ijheatfluidflow.2013.07.012
      [21]
      H. Zhang, Y.Q. Tan, D.M. Yang, et al., Numerical investigation of the location of maximum erosive wear damage in elbow: Effect of slurry velocity, bend orientation and angle of elbow, Powder Technol., 217(2012), p. 467. doi: 10.1016/j.powtec.2011.11.003
      [22]
      Y.Q. Tan, H. Zhang, D.M. Yang, S.Q. Jiang, J.H. Song, and Y. Sheng, Numerical simulation of concrete pumping process and investigation of wear mechanism of the piping wall, Tribol. Int., 46(2012), No. 1, p. 137. doi: 10.1016/j.triboint.2011.06.005
      [23]
      B.Q. Wu, X.D. Wang, X.X. Liu, G.G. Xu, and S.B. Zhu, Numerical simulation of erosion and fatigue failure the coal gangue paste filling caused to pumping pipes, Eng. Fail. Anal., 134(2022), art. No. 106081. doi: 10.1016/j.engfailanal.2022.106081
      [24]
      V. Kannojiya, M. Deshwal, and D. Deshwal, Numerical analysis of solid particle erosion in pipe elbow, Mater. Today Proc., 5(2018), No. 2, p. 5021. doi: 10.1016/j.matpr.2017.12.080
      [25]
      Q.C. Wang, Q.Y. Huang, N.R. Wang, et al., An experimental and numerical study of slurry erosion behavior in a horizontal elbow and elbows in series, Eng. Fail. Anal., 130(2021), art. No. 105779. doi: 10.1016/j.engfailanal.2021.105779
      [26]
      M.M. Zhou, S.B. Kuang, F. Xiao, K. Luo, and A.B. Yu, CFD-DEM analysis of hydraulic conveying bends: Interaction between pipe orientation and flow regime, Powder Technol., 392(2021), p. 619. doi: 10.1016/j.powtec.2021.07.052
      [27]
      M. Parsi, M. Agrawal, V. Srinivasan, et al., CFD simulation of sand particle erosion in gas-dominant multiphase flow, J. Nat. Gas Sci. Eng., 27(2015), p. 706. doi: 10.1016/j.jngse.2015.09.003
      [28]
      J.X. Zhang, J.A. Kang, J.C. Fan, and J.C. Gao, Study on erosion wear of fracturing pipeline under the action of multiphase flow in oil & gas industry, J. Nat. Gas Sci. Eng., 32(2016), p. 334. doi: 10.1016/j.jngse.2016.04.056
      [29]
      M. Parsi, R.E. Vieira, N. Kesana, B.S. McLaury, and S.A. Shirazi, Ultrasonic measurements of sand particle erosion in gas dominant multiphase churn flow in vertical pipes, Wear, 328-329(2015), p. 401. doi: 10.1016/j.wear.2015.03.013
      [30]
      S.N. Shah and S. Jain, Coiled tubing erosion during hydraulic fracturing slurry flow, Wear, 264(2008), No. 3-4, p. 279. doi: 10.1016/j.wear.2007.03.016
      [31]
      N. Lin, H.Q. Lan, Y.G. Xu, S.H. Dong, and G. Barber, Effect of the gas-solid two-phase flow velocity on elbow erosion, J. Nat. Gas Sci. Eng., 26(2015), p. 581. doi: 10.1016/j.jngse.2015.06.054
      [32]
      Q.B. Nguyen, V.B. Nguyen, C.Y.H. Lim, et al., Effect of impact angle and testing time on erosion of stainless steel at higher velocities, Wear, 321(2014), p. 87. doi: 10.1016/j.wear.2014.10.010
      [33]
      J.K. Chen, Y.S. Wang, X.F. Li, R.Y. He, S. Han, and Y.L. Chen, Erosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD–DEM coupling method, Powder Technol., 275(2015), p. 182. doi: 10.1016/j.powtec.2014.12.057
      [34]
      M. Tiberga, A. Hennink, J.L. Kloosterman, and D. Lathouwers, A high-order discontinuous Galerkin solver for the incompressible RANS equations coupled to the kϵ, Comput. Fluids, 212(2020), art. No. 104710.
      [35]
      B.E. Launder and B.I. Sharma, Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc, Lett. Heat Mass Transf., 1(1974), No. 2, p. 131. doi: 10.1016/0094-4548(74)90150-7
      [36]
      Y. Sun, M.L. Liu, Y. Xiao, and Y.F. Chen, A novel molecular communication inspired detection method for the evolution of atherosclerosis, Comput. Meth. Programs Biomed., 219(2022), art. No. 106756. doi: 10.1016/j.cmpb.2022.106756
      [37]
      M. Rafiee, M.J.H. Simmons, A. Ingram, and E.H. Stitt, Development of positron emission particle tracking for studying laminar mixing in Kenics static mixer, Chem. Eng. Res. Des., 91(2013), No. 11, p. 2106. doi: 10.1016/j.cherd.2013.05.022
      [38]
      A. Mansouri, Development of Erosion Equations for Slurry Flows, Advis. Board Rep. Erosion/Corrosion Res. Center, Univ. Tulsa, Tulsa, 2015, p. 48.
      [39]
      L. Zeng, G.A. Zhang, and X.P. Guo, Erosion-corrosion at different locations of X65 carbon steel elbow, Corros. Sci., 85(2014), p. 318. doi: 10.1016/j.corsci.2014.04.045
      [40]
      M.H. Zolfagharnasab, M. Salimi, H. Zolfagharnasab, H. Alimoradi, M. Shams, and C. Aghanajafi, A novel numerical investigation of erosion wear over various 90-degree elbow duct sections, Powder Technol., 380(2021), p. 1. doi: 10.1016/j.powtec.2020.11.059
      [41]
      M.A. Al-Bukhaiti, S.M. Ahmed, F.M.F. Badran, and K.M. Emara, Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron, Wear, 262(2007), No. 9-10, p. 1187. doi: 10.1016/j.wear.2006.11.018
      [42]
      R.E. Vieira, A. Mansouri, B.S. McLaury, and S.A. Shirazi, Experimental and computational study of erosion in elbows due to sand particles in air flow, Powder Technol., 288(2016), p. 339. doi: 10.1016/j.powtec.2015.11.028
      [43]
      X.H. Chen, B.S. McLaury, and S.A. Shirazi, Numerical and experimental investigation of the relative erosion severity between plugged Tees and elbows in dilute gas/solid two-phase flow, Wear, 261(2006), No. 7-8, p. 715. doi: 10.1016/j.wear.2006.01.022
      [44]
      D.J. Blanchard, P. Griffith, and E. Rabinowicz, Erosion of a pipe bend by solid particles entrained in water, J. Manuf. Sci. Eng., 106(1984), No. 3, p. 213. doi: 10.1115/1.3185935
      [45]
      P.C. Kang, Q.Q. Zhao, S.Q. Guo, et al., Optimisation of the spark plasma sintering process for high volume fraction SiCp/Al composites by orthogonal experimental design, Ceram. Int., 47(2021), No. 3, p. 3816. doi: 10.1016/j.ceramint.2020.09.240
      [46]
      Q. Li, Z.Y. Peng, W.B. Jiang, et al., Optimization of Ti−Zr−Cr−Fe alloys for 45 MPa metal hydride hydrogen compressors using orthogonal analysis, J. Alloys Compd., 889(2021), art. No. 161629. doi: 10.1016/j.jallcom.2021.161629

    Catalog


    • /

      返回文章
      返回