留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 2
Feb.  2024

图(9)

数据统计

分享

计量
  • 文章访问数:  1121
  • HTML全文浏览量:  148
  • PDF下载量:  35
  • 被引次数: 0
Qiancheng Zhang, Limin Zhang, Feng Jiang, Honghu Tang, Li Wang, and Wei Sun, Ferric ion-triggered surface oxidation of galena for efficient chalcopyrite–galena separation, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 261-267. https://doi.org/10.1007/s12613-023-2674-x
Cite this article as:
Qiancheng Zhang, Limin Zhang, Feng Jiang, Honghu Tang, Li Wang, and Wei Sun, Ferric ion-triggered surface oxidation of galena for efficient chalcopyrite–galena separation, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 261-267. https://doi.org/10.1007/s12613-023-2674-x
引用本文 PDF XML SpringerLink
研究论文

铁离子氧化方铅矿表面实现黄铜矿–方铅矿高效分离


  • 通讯作者:

    江锋    E-mail: feng_jiang@csu.edu.cn

文章亮点

  • (1)Fe3+对方铅矿具有选择性抑制作用
  • (2)Fe3+将方铅矿表面氧化成PbSO4,而其自身被还原成Fe2+
  • (3)方铅矿表面致密的PbSO4纳米薄膜有效阻碍了捕收剂的吸附,显著增强了亲水性
  • 黄铜矿和方铅矿的高效浮选分离是实现复杂铜铅矿产资源有效利用的关键,其关键是寻找一种绿色环保、成本低廉的选择性抑制剂。本论文通过纯矿物浮选试验、傅里叶变换红外光谱、扫描电镜、X射线光电子能谱和拉曼光谱等多种技术手段,深入研究了铁离子作为方铅矿选择性抑制剂在铜铅浮选分离中的应用。浮选试验结果表明,当铁离子浓度为50 mg/L时,方铅矿被彻底抑制,而黄铜矿回收率仍达到80%。通过分析药剂在矿物表面的吸附行为发现,铁离子有效降低了乙硫氨酯在方铅矿表面的吸附,而不影响其在黄铜矿表面的吸附。矿物表面微观结构观测结果表明,铁离子能氧化方铅矿表面,形成致密的硫酸铅纳米颗粒薄膜,进而有效地抑制了乙硫氨酯在方铅矿表面的吸附,显著增强了方铅矿表面的亲水性。本研究为高效环保分离黄铜矿和方铅矿提供了一个可行的解决方案。
  • Research Article

    Ferric ion-triggered surface oxidation of galena for efficient chalcopyrite–galena separation

    + Author Affiliations
    • The efficient separation of chalcopyrite (CuFeS2) and galena (PbS) is essential for optimal resource utilization. However, finding a selective depressant that is environmentally friendly and cost effective remains a challenge. Through various techniques, such as microflotation tests, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) observation, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy measurements, this study explored the use of ferric ions (Fe3+) as a selective depressant for galena. The results of flotation tests revealed the impressive selective inhibition capabilities of Fe3+ when used alone. Surface analysis showed that Fe3+ significantly reduced the adsorption of isopropyl ethyl thionocarbamate (IPETC) on the galena surface while having a minimal impact on chalcopyrite. Further analysis using SEM, XPS, and Raman spectra revealed that Fe3+ can oxidize lead sulfide to form compact lead sulfate nanoparticles on the galena surface, effectively depressing IPETC adsorption and increasing surface hydrophilicity. These findings provide a promising solution for the efficient and environmentally responsible separation of chalcopyrite and galena.
    • loading
    • [1]
      W. Guo, B. Feng, J.X. Peng, W.P. Zhang, and X.W. Zhu, Depressant behavior of tragacanth gum and its role in the flotation separation of chalcopyrite from talc, J. Mater. Res. Technol., 8(2019), No. 1, p. 697. doi: 10.1016/j.jmrt.2018.05.015
      [2]
      Q. Zhang, S.M. Wen, Q.C. Feng, and H. Wang, Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1150. doi: 10.1007/s12613-021-2379-y
      [3]
      J.S. Yu, R.Q. Liu, L. Wang, W. Sun, H. Peng, and Y.H. Hu, Selective depression mechanism of ferric chromium lignin sulfonate for chalcopyrite–galena flotation separation, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 489. doi: 10.1007/s12613-018-1595-6
      [4]
      X.M. Qiu, H.Y. Yang, G.B. Chen, S.P. Zhong, C.K. Cai, and B.B. Lan, Inhibited mechanism of carboxymethyl cellulose as a galena depressant in chalcopyrite and galena separation flotation, Miner. Eng., 150(2020), art. No. 106273. doi: 10.1016/j.mineng.2020.106273
      [5]
      A.A. Nikolaev and B.E. Goryachev, Thermodynamic and flotation analysis of influence exerted by chromate ions on separation of galena and chaclopyrite in alkaline media, J. Min. Sci., 43(2007), No. 6, p. 670. doi: 10.1007/s10913-007-0074-7
      [6]
      X. Chen, G.H. Gu, and Z.X. Chen, Seaweed glue as a novel polymer depressant for the selective separation of chalcopyrite and galena, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1495. doi: 10.1007/s12613-019-1848-z
      [7]
      Q. Liu and Y.H. Zhang, Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena using dextrin, Miner. Eng., 13(2000), No. 13, p. 1405. doi: 10.1016/S0892-6875(00)00122-9
      [8]
      Z.J. Piao, D.Z. Wei, Z.L. Liu, W.G. Liu, S.L. Gao, and M.Y. Li, Selective depression of galena and chalcopyrite by O,O-bis(2,3-dihydroxypropyl) dithiophosphate, Trans. Nonferrous Met. Soc. China, 23(2013), No. 10, p. 3063. doi: 10.1016/S1003-6326(13)62834-4
      [9]
      J.M. Li, K.W. Song, D.W. Liu, et al., Hydrolyzation and adsorption behaviors of SPH and SCT used as combined depressants in the selective flotation of galena from sphalerite, J. Mol. Liq., 231(2017), p. 485. doi: 10.1016/j.molliq.2017.02.035
      [10]
      R.Z. Liu, W.Q. Qin, F. Jiao, et al., Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate, Trans. Nonferrous Met. Soc. China, 26(2016), No. 1, p. 265. doi: 10.1016/S1003-6326(16)64113-4
      [11]
      P. Huang, L. Wang, and Q. Liu, Depressant function of high molecular weight polyacrylamide in the xanthate flotation of chalcopyrite and galena, Int. J. Miner. Process., 128(2014), p. 6. doi: 10.1016/j.minpro.2014.02.004
      [12]
      P. Huang, M.L. Cao, and Q. Liu, Selective depression of sphalerite by chitosan in differential PbZn flotation, Int. J. Miner. Process., 122(2013), p. 29. doi: 10.1016/j.minpro.2013.04.010
      [13]
      P. Huang, M.L. Cao, and Q. Liu, Adsorption of chitosan on chalcopyrite and galena from aqueous suspensions, Colloids Surf. A: Physicochem. Eng. Aspects, 409(2012), p. 167. doi: 10.1016/j.colsurfa.2012.06.016
      [14]
      A. López-Valdivieso, L.A. Lozano-Ledesma, A. Robledo-Cabrera, and O.A. Orozco-Navarro, Carboxymethylcellulose (CMC) as PbS depressant in the processing of Pb–Cu bulk concentrates. Adsorption and floatability studies, Miner. Eng., 112(2017), p. 77. doi: 10.1016/j.mineng.2017.07.012
      [15]
      Z.G. Yin, W. Sun, Y.H. Hu, et al., Synthesis of acetic acid-​[(hydrazinylthioxome​thyl)​thio]-sodium and its application on the flotation separation of molybdenite from galena, J. Ind. Eng. Chem., 52(2017), p. 82. doi: 10.1016/j.jiec.2017.03.027
      [16]
      X.R. Zhang, Z.B. Qian, G.B. Zheng, Y.G. Zhu, and W.G. Wu, The design of a macromolecular depressant for galena based on DFT studies and its application, Miner. Eng., 112(2017), p. 50. doi: 10.1016/j.mineng.2017.07.007
      [17]
      J.H. Chen, X.H. Long, L.H. Lan, and Q. He, Thermodynamics and density functional theory study of potassium dichromate interaction with galena, Int. J. Miner. Metall. Mater., 21(2014), No. 10, p. 947. doi: 10.1007/s12613-014-0994-6
      [18]
      R.P. Liao, S.M. Wen, Q.C. Feng, J.S. Deng, and H. Lai, Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 271. doi: 10.1007/s12613-022-2505-5
      [19]
      G. Hong, J. Choi, Y. Han, et al., Relationship between surface characteristics and floatability in representative sulfide minerals: Role of surface oxidation, Mater. Trans., 58(2017), No. 7, p. 1069. doi: 10.2320/matertrans.M2017014
      [20]
      B. Feng, X.K. Jiao, H.H. Wang, J.X. Peng, and G. Yang, Improving the separation of chalcopyrite and galena by surface oxidation using hydroxyethyl cellulose as depressant, Miner. Eng., 160(2021), art. No. 106657. doi: 10.1016/j.mineng.2020.106657
      [21]
      D.W. Wang, F. Jiao, W.Q. Qin, and X.J. Wang, Effect of surface oxidation on the flotation separation of chalcopyrite and galena using sodium humate as depressant, Sep. Sci. Technol., 53(2018), No. 6, p. 961. doi: 10.1080/01496395.2017.1405042
      [22]
      S.A. Khoso, Y.H. Hu, F. Lü, Y. Gao, R.Q. Liu, and W. Sun, Xanthate interaction and flotation separation of H2O2-treated chalcopyrite and pyrite, Trans. Nonferrous Met. Soc. China, 29(2019), No. 12, p. 2604. doi: 10.1016/S1003-6326(19)65167-8
      [23]
      F. Jiang, L.M. Zhang, T. Yue, et al., Defect-boosted molybdenite-based co-catalytic Fenton reaction, Inorg. Chem. Front., 8(2021), No. 14, p. 3440. doi: 10.1039/D1QI00344E
      [24]
      A.P. Chandra, L. Puskar, D.J. Simpson, and A.R. Gerson, Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation, Int. J. Miner. Process., 114-117(2012), p. 16. doi: 10.1016/j.minpro.2012.08.003
      [25]
      Y.L. Botero, A. Canales-Mahuzier, R. Serna-Guerrero, A. López-Valdivieso, M. Benzaazoua, and L.A. Cisternas, Physical-chemical study of IPETC and PAX collector’s adsorption on covellite surface, Appl. Surf. Sci., 602(2022), art. No. 154232. doi: 10.1016/j.apsusc.2022.154232
      [26]
      P. Forson, W. Skinner, and R. Asamoah, Decoupling pyrite and arsenopyrite in flotation using thionocarbamate collector, Powder Technol., 385(2021), p. 12. doi: 10.1016/j.powtec.2021.02.057
      [27]
      Y.H. Zhang, Z. Cao, Y.D. Cao, and C.Y. Sun, FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces, J. Mol. Struct., 1048(2013), p. 434. doi: 10.1016/j.molstruc.2013.06.015
      [28]
      K. Laajalehto, J. Leppinen, I. Kartio, and T. Laiho, XPS and FTIR study of the influence of electrode potential on activation of pyrite by copper or lead, Colloids Surf. A: Physicochem. Eng. Aspects, 154(1999), No. 1-2, p. 193. doi: 10.1016/S0927-7757(98)00897-8
      [29]
      B.C. Wu, G.H. Gu, S. Deng, D.H. Liu, and X.X. Xiong, Efficient natural pyrrhotite activating persulfate for the degradation of O-isopropyl-N-ethyl thionocarbamate: Iron recycle mechanism and degradation pathway, Chemosphere, 224(2019), p. 120. doi: 10.1016/j.chemosphere.2019.02.062
      [30]
      H. Wang, J.C. Wang, Q.P. Zou, W.Q. Liu, C.Q. Wang, and W.Q. Huang, Surface treatment using potassium ferrate for separation of polycarbonate and polystyrene waste plastics by froth flotation, Appl. Surf. Sci., 448(2018), p. 219. doi: 10.1016/j.apsusc.2018.04.091
      [31]
      W.Q. Qin, X.J. Wang, L.Y. Ma, et al., Electrochemical characteristics and collectorless flotation behavior of galena: With and without the presence of pyrite, Miner. Eng., 74(2015), p. 99. doi: 10.1016/j.mineng.2015.01.010
      [32]
      G. De Giudici, A. Rossi, L. Fanfani, and P. Lattanzi, Mechanisms of galena dissolution in oxygen-saturated solutions: Evaluation of pH effect on apparent activation energies and mineral-water interface, Geochim. Cosmochim. Acta, 69(2005), No. 9, p. 2321. doi: 10.1016/j.gca.2004.12.003
      [33]
      Y.L. Mikhlin, A.A. Karacharov, and M.N. Likhatski, Effect of adsorption of butyl xanthate on galena, PbS, and HOPG surfaces as studied by atomic force microscopy and spectroscopy and XPS, Int. J. Miner. Process., 144(2015), p. 81. doi: 10.1016/j.minpro.2015.10.004
      [34]
      X. Ma, Y. Hu, H. Zhong, S. Wang, G.Y. Liu, and G. Zhao, A novel surfactant S-benzoyl-N,N-diethyldithiocarbamate synthesis and its flotation performance to galena, Appl. Surf. Sci., 365(2016), p. 342. doi: 10.1016/j.apsusc.2016.01.048
      [35]
      H.Y. Xie, Y.L. Jin, P. Zhang, et al., Surface modification mechanism of galena with H2SO4 and its effect on flotation separation performance, Appl. Surf. Sci., 579(2022), art. No. 152129. doi: 10.1016/j.apsusc.2021.152129
      [36]
      M.F. Liu, C.Y. Zhang, B. Hu, et al., Enhancing flotation separation of chalcopyrite and galena by the surface synergism between sodium sulfite and sodium lignosulfonate, Appl. Surf. Sci., 507(2020), art. No. 145042. doi: 10.1016/j.apsusc.2019.145042
      [37]
      G.K. Parker, R. Woods, and G.A. Hope, Raman investigation of chalcopyrite oxidation, Colloids Surf. A: Physicochem. Eng. Aspects, 318(2008), No. 1-3, p. 160. doi: 10.1016/j.colsurfa.2007.12.030
      [38]
      B. Li, L. Huang, M.Z. Zhong, Z.M. Wei, and J.B. Li, Electrical and magnetic properties of FeS2 and CuFeS2 nanoplates, RSC Adv., 5(2015), No. 111, p. 91103. doi: 10.1039/C5RA16918F
      [39]
      M.D. Lane, Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals, Am. Mineral., 92(2007), No. 1, p. 1. doi: 10.2138/am.2007.2170
      [40]
      M. Monneron-Gyurits, E. Joussein, A. Courtin-Nomade, et al., A fast one-pot synthesize of crystalline anglesite by hydrothermal synthesis for environmental assessment on pure phase, Environ. Sci. Pollut. Res. Int., 29(2022), No. 12, p. 17373. doi: 10.1007/s11356-021-17011-6
      [41]
      B. Han, A.J. Xie, Q.B. Yu, F.Z. Huang, Y.H. Shen, and L. Zhu, Synthesis of PbSO4 crystals by hydrogel template on postprocessing strategy for secondary pollution, Appl. Surf. Sci., 261(2012), p. 623. doi: 10.1016/j.apsusc.2012.08.069
      [42]
      G. Falgayrac, S. Sobanska, J. Laureyns, and C. Brémard, Heterogeneous chemistry between PbSO4 and calcite microparticles using Raman microimaging, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 64(2006), No. 5, p. 1095. doi: 10.1016/j.saa.2005.11.032
      [43]
      L. Yu, Q.J. Liu, S.M. Li, J.S. Deng, B. Luo, and H. Lai, Depression mechanism involving Fe3+ during arsenopyrite flotation, Sep. Purif. Technol., 222(2019), p. 109. doi: 10.1016/j.seppur.2019.04.007
      [44]
      P.X. Li, G. Zhang, W.J. Zhao, G. Han, and Q.C. Feng, Interaction mechanism of Fe3+ with smithsonite surfaces and its response to flotation performance, Sep. Purif. Technol., 291(2022), art. No. 121001. doi: 10.1016/j.seppur.2022.121001

    Catalog


    • /

      返回文章
      返回