留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 11
Nov.  2023

图(16)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  675
  • HTML全文浏览量:  224
  • PDF下载量:  59
  • 被引次数: 0
Li Zhao, Jinke Wang, Kai Chen, Jingzhi Yang, Xin Guo, Hongchang Qian, Lingwei Ma, and Dawei Zhang, Functionalized carbon dots for corrosion protection: Recent advances and future perspectives, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2112-2133. https://doi.org/10.1007/s12613-023-2675-9
Cite this article as:
Li Zhao, Jinke Wang, Kai Chen, Jingzhi Yang, Xin Guo, Hongchang Qian, Lingwei Ma, and Dawei Zhang, Functionalized carbon dots for corrosion protection: Recent advances and future perspectives, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2112-2133. https://doi.org/10.1007/s12613-023-2675-9
引用本文 PDF XML SpringerLink
特约综述

功能化碳点在腐蚀防护中的研究进展与展望


  • 通讯作者:

    马菱薇    E-mail: mlw1215@ustb.edu.cn

    张达威    E-mail: dzhang@ustb.edu.cn

文章亮点

  • (1) 总结了功能化碳点作为缓蚀剂和涂层填料的制备方法、基本物理化学性能和防腐机理。
  • (2) 系统地综述了碳点在防腐涂层中的最新研究进展,并对碳点改性智能涂层的自修复和自预警机理进行了深入研究。
  • (3) 重点讨论了碳点的优化方法,主要包括表面功能化和杂原子掺杂。
  • (4) 阐述了开发基于功能化碳点的腐蚀防护系统的挑战和发展前景。
  • 金属腐蚀会给全球带来重大的经济损失、安全问题和环境污染,因此,腐蚀防护受到了学术界广泛的关注。由于腐蚀不能完全消除,防腐技术的主要目标是探索防腐机制并减缓腐蚀动力学。缓蚀剂和保护涂层是保护金属材料免受腐蚀降解的最常见和最具成本效益的方法。碳点(CDs)是一类新型零维碳纳米材料,由于其具有原料丰富、低毒性、易于化学改性、缓蚀性能和光学性能优异等优点,目前已被证明其可以用于防腐。因此,碳点作为防腐领域中具有应用前景的缓蚀剂和填料,成为近年来腐蚀防护领域的研究热点。本文全面概述了功能化碳点的制备、物理化学性质和其在防腐系统领域的自修复/自预警应用和机制。作为缓蚀剂,由于表面存在电负性原子,碳点可以在金属表面形成均匀吸附的缓蚀膜。此外,可以对碳点进行简单的表面修饰,形成羧基、氨基、羰基和羟基等官能团,从而增强其缓蚀能力。作为涂层填料,碳点形成的有效屏障可以抑制裂纹或局部损伤的扩散,并实现自修复。此外,碳点上的官能团可以与腐蚀过程中产生的Fe3+和H+离子相互作用,从而实现无损腐蚀监测和自预警。最后,本文提出了开发基于功能化碳点的防腐系统的挑战和发展前景。
  • Invited Review

    Functionalized carbon dots for corrosion protection: Recent advances and future perspectives

    + Author Affiliations
    • Metal corrosion causes significant economic losses, safety issues, and environmental pollution. Hence, its prevention is of immense research interest. Carbon dots (CDs) are a new class of zero-dimensional carbon nanomaterials, which have been considered for corrosion protection applications in recent years due to their corrosion inhibition effect, fluorescence, low toxicity, facile chemical modification, and cost-effectiveness. This study provides a comprehensive overview of the synthesis, physical and chemical properties, and anticorrosion mechanisms of functionalized CDs. First, the corrosion inhibition performance of different types of CDs is introduced, followed by discussion on their application in the development of smart protective coatings with self-healing and/or self-reporting properties. The effective barrier formed by CDs in the coatings can inhibit the spread of local damage and achieve self-healing behavior. In addition, diverse functional groups on CDs can interact with Fe3+ and H+ ions generated during the corrosion process; this interaction changes their fluorescence, thereby demonstrating self-reporting behavior. Moreover, challenges and prospects for the development of CD-based corrosion protection systems are also presented.
    • loading
    • [1]
      R.H. Zhang, L.P. Xiong, Z.Y. He, J.B. Pu, and L. Guo, Synthesis and structure of water-soluble Sb quantum dots and enhanced corrosion inhibition performance and mechanisms, Inorg. Chem., 60(2021), No. 21, p. 16346. doi: 10.1021/acs.inorgchem.1c02172
      [2]
      Q.Z. Zhou, G.H. Yuan, M.J. Lin, et al., Large-scale electrochemical fabrication of nitrogen-doped carbon quantum dots and their application as corrosion inhibitor for copper, J. Mater. Sci., 56(2021), No. 22, p. 12909. doi: 10.1007/s10853-021-06102-x
      [3]
      M. Ouakki, M. Galai, and M. Cherkaoui, Imidazole derivatives as efficient and potential class of corrosion inhibitors for metals and alloys in aqueous electrolytes: A review, J. Mol. Liq., 345(2022), art. No. 117815. doi: 10.1016/j.molliq.2021.117815
      [4]
      F. Zhang, P.F. Ju, M.Q. Pan, et al., Self-healing mechanisms in smart protective coatings: A review, Corros. Sci., 144(2018), p. 74. doi: 10.1016/j.corsci.2018.08.005
      [5]
      J.K. Wang, L.W. Ma, X. Guo, et al., Two birds with one stone: Nanocontainers with synergetic inhibition and corrosion sensing abilities towards intelligent self-healing and self-reporting coating, Chem. Eng. J., 433(2022), art. No. 134515. doi: 10.1016/j.cej.2022.134515
      [6]
      X.M. Xu, H.Y. Wei, M.G. Liu, et al., Nitrogen-doped carbon quantum dots for effective corrosion inhibition of Q235 steel in concentrated sulphuric acid solution, Mater. Today Commun., 29(2021), art. No. 102872. doi: 10.1016/j.mtcomm.2021.102872
      [7]
      S. Pourhashem, E. Ghasemy, A. Rashidi, and M.R. Vaezi, Corrosion protection properties of novel epoxy nanocomposite coatings containing silane functionalized graphene quantum dots, J. Alloys Compd., 731(2018), p. 1112. doi: 10.1016/j.jallcom.2017.10.150
      [8]
      D. Wang, Q. Ma, K.H. Tian, C.Q. Duan, Z.Y. Wang, and Y.G. Liu, Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1666. doi: 10.1007/s12613-021-2286-2
      [9]
      H.Y. Cen, X. Zhang, L. Zhao, Z.Y. Chen, and X.P. Guo, Carbon dots as effective corrosion inhibitor for 5052 aluminium alloy in 0.1 M HCl solution, Corros. Sci., 161(2019), art. No. 108197. doi: 10.1016/j.corsci.2019.108197
      [10]
      Y. Huang, P.J. Wang, W.M. Tan, et al., Photothermal and pH dual-responsive self-healing coating for smart corrosion protection, J. Mater. Sci. Technol., 107(2022), p. 34. doi: 10.1016/j.jmst.2021.08.044
      [11]
      J.K. Wang, L.W. Ma, Y. Huang, et al., Photothermally activated self-healing protective coating based on the “close and seal” dual-action mechanisms, Composites Part B, 231(2022), art. No. 109574. doi: 10.1016/j.compositesb.2021.109574
      [12]
      S.Y. Zeng, F. Zhang, Y.H. Liu, S.L. Ouyang, Y.W. Ye, and H. Chen, Synthesis of Ce, N co-doped carbon dots as green and effective corrosion inhibitor for copper in acid environment, J. Taiwan. Inst. Chem. Eng., 141(2022), art. No. 104608. doi: 10.1016/j.jtice.2022.104608
      [13]
      T. Palaniselvam, V. Kashyap, S.N. Bhange, J. Baek, and S. Kurungot, Nanoporous graphene enriched with Fe/Co‐N active sites as a promising oxygen reduction electrocatalyst for anion exchange membrane fuel cells, Adv. Funct. Mater., 26(2016), No. 13, p. 2150. doi: 10.1002/adfm.201504765
      [14]
      Q.K. Du, Q.X. Wu, H.X. Wang, et al., Carbon dot-modified silicon nanoparticles for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1603. doi: 10.1007/s12613-020-2247-1
      [15]
      J.J. Zhu, M.Y. Zhu, R.H. Zhang, Z.Y. He, L.P. Xiong, and L. Guo, Corrosion inhibition behavior of electrochemically synthesized carbon dots on Q235 carbon steel, J. Adhes. Sci. Technol., 37(2023), No. 13, p. 1997. doi: 10.1080/01694243.2022.2108271
      [16]
      S.Y. Zheng, L. Feng, Z.Y. Hu, J.N. Li, H.L. Zhu, and X.M. Ma, Study on the corrosion inhibition of biomass carbon quantum dot self-aggregation on Q235 steel in hydrochloric acid, Arab. J. Chem., 16(2023), No. 4, art. No. 104605. doi: 10.1016/j.arabjc.2023.104605
      [17]
      T.T. Zhang, D.Q. Zhang, P.P. Wu, and L.X. Gao, Corrosion inhibition of high-nitrogen-doped CDs for copper in 3wt% NaCl solution, J. Taiwan Inst. Chem. Eng., 138(2022), art. No. 104462. doi: 10.1016/j.jtice.2022.104462
      [18]
      J.A. Hao, L.Y. Li, W.W. Zhao, et al., Synthesis and application of CCQDs as a novel type of environmentally friendly scale inhibitor, ACS Appl. Mater. Interfaces, 11(2019), No. 9, p. 9277. doi: 10.1021/acsami.8b19015
      [19]
      A.K. Keerthana and P.M. Ashraf, Carbon nanodots synthesized from chitosan and its application as a corrosion inhibitor in boat-building carbon steel BIS2062, Appl. Nanosci., 10(2020), No. 4, p. 1061. doi: 10.1007/s13204-019-01177-0
      [20]
      L.W. Ma, C.H. Ren, J.K. Wang, et al., Self-reporting coatings for autonomous detection of coating damage and metal corrosion: A review, Chem. Eng. J., 421(2021), art. No. 127854. doi: 10.1016/j.cej.2020.127854
      [21]
      T. Liu, L.W. Ma, X. Wang, et al., Self-healing corrosion protective coatings based on micro/nanocarriers: A review, Corros. Commun., 1(2021), p. 18. doi: 10.1016/j.corcom.2021.05.004
      [22]
      Q. Xu, P. Pu, J.G. Zhao, et al., Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection, J. Mater. Chem. A., 3(2015), No. 2, p. 542. doi: 10.1039/C4TA05483K
      [23]
      R.X. Wang, X.F. Wang, and Y.M. Sun, One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH, Sens. Actuators B, 241(2017), p. 73. doi: 10.1016/j.snb.2016.10.043
      [24]
      H.D. Zhang, A.Y. Chen, B. Gan, H. Jiang, and L.J. Gu, Corrosion protection investigations of carbon dots and polydopamine composite coating on magnesium alloy, J. Magnes. Alloys, 10(2022), No. 5, p. 1358. doi: 10.1016/j.jma.2020.11.021
      [25]
      H.Y. Cheng, D.C. Li, B.H. Cheng, and H. Jiang, Highly stable and selective measurement of Fe3+ ions under environmentally relevant conditions via an excitation-based multiwavelength method using N, S-doped carbon dots, Environ. Res., 170(2019), p. 443. doi: 10.1016/j.envres.2018.12.023
      [26]
      M. Zulfajri, G. Gedda, C.J. Chang, Y.P. Chang, and G.G. Huang, Cranberry beans derived carbon dots as a potential fluorescence sensor for selective detection of Fe3+ ions in aqueous solution, ACS Omega, 4(2019), No. 13, p. 15382. doi: 10.1021/acsomega.9b01333
      [27]
      L.M. Ruan, Y.J. Zhao, Z.H. Chen, et al., Ethylenediamine-assisted hydrothermal method to fabricate MoS2 quantum dots in aqueous solution as a fluorescent probe for Fe3+ ion detection, Appl. Surf. Sci., 528(2020), art. No. 146811. doi: 10.1016/j.apsusc.2020.146811
      [28]
      C. Zhu, Y.J. Fu, C.A. Liu, et al., Carbon dots as fillers inducing healing/self-healing and anticorrosion properties in polymers, Adv. Mater., 29(2017), No. 32, art. No. 1701399. doi: 10.1002/adma.201701399
      [29]
      C.B. Liu, Z.Y. Jin, L. Cheng, H.C. Zhao, and L.P. Wang, Synthesis of nanosensors for autonomous warning of damage and self-repairing in polymeric coatings, Nanoscale, 12(2020), No. 5, p. 3194. doi: 10.1039/C9NR09221H
      [30]
      S.L. Hu, Q. Zhao, Q. Chang, J.L. Yang, and J. Liu, Enhanced performance of Fe3+ detection via fluorescence resonance energy transfer between carbon quantum dots and Rhodamine B, RSC Adv., 4(2014), No. 77, p. 41069. doi: 10.1039/C4RA06371F
      [31]
      J. Zhang, J.B. Wang, J.P. Fu, X.C. Fu, W. Gan, and H.Q. Hao, Rapid synthesis of N, S co-doped carbon dots and their application for Fe3+ ion detection, J. Nanopart. Res., 20(2018), No. 2, art. No. 41. doi: 10.1007/s11051-018-4141-6
      [32]
      S. Pang and S.Y. Liu, Dual-emission carbon dots for ratiometric detection of Fe3+ ions and acid phosphatase, Anal. Chim. Acta, 1105(2020), p. 155. doi: 10.1016/j.aca.2020.01.033
      [33]
      C.H. Ren, Y. Huang, W.K. Hao, et al., Multi-action self-healing coatings with simultaneous recovery of corrosion resistance and adhesion strength, J. Mater. Sci. Technol., 101(2022), p. 18. doi: 10.1016/j.jmst.2021.05.070
      [34]
      H.Z. Zheng, Q.L. Wang, Y.J. Long, H.J. Zhang, X.X. Huang, and R. Zhu, Enhancing the luminescence of carbon dots with a reduction pathway, Chem. Commun., 47(2011), No. 38, p. 10650. doi: 10.1039/c1cc14741b
      [35]
      S. Wan, H.K. Chen, G.Y. Cai, B.K. Liao, and X.P. Guo, Functionalization of h-BN by the exfoliation and modification of carbon dots for enhancing corrosion resistance of waterborne epoxy coating, Prog. Org. Coat., 165(2022), p. 106757. doi: 10.1016/j.porgcoat.2022.106757
      [36]
      S. Li, L. Li, H.Y. Tu, et al., The development of carbon dots: From the perspective of materials chemistry, Mater. Today, 51(2021), p. 188. doi: 10.1016/j.mattod.2021.07.028
      [37]
      Y.P. Sun, B. Zhou, Y. Lin, et al., Quantum-sized carbon dots for bright and colorful photoluminescence, J. Am. Chem. Soc., 128(2006), No. 24, p. 7756. doi: 10.1021/ja062677d
      [38]
      J. Yu, N. Song, Y.K. Zhang, S.X. Zhong, A.J. Wang, and J.R. Chen, Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+, Sens. Actuators B, 214(2015), p. 29. doi: 10.1016/j.snb.2015.03.006
      [39]
      C. Kang, Y. Huang, H. Yang, X.F. Yan, and Z.P. Chen, A review of carbon dots produced from biomass wastes, Nanomaterials, 10(2020), No. 11, art. No. 2316. doi: 10.3390/nano10112316
      [40]
      R.T. Guo, L. Li, B.W. Wang, et al., Functionalized carbon dots for advanced batteries, Energy Storage Mater., 37(2021), p. 8. doi: 10.1016/j.ensm.2021.01.020
      [41]
      Q. Zhang, R. Wang, B. Feng, X. Zhong, and K.K. Ostrikov, Photoluminescence mechanism of carbon dots: Triggering high-color-purity red fluorescence emission through edge amino protonation, Nat. Commun., 12(2021), No. 1, art. No. 6856. doi: 10.1038/s41467-021-27071-4
      [42]
      Z. Xie, F. Wang, and C.Y. Liu, Organic-inorganic hybrid functional carbon dot gel glasses, Adv. Mater., 24(2012), No. 13, p. 1716. doi: 10.1002/adma.201104962
      [43]
      G.E. LeCroy, S.K. Sonkar, F. Yang, et al., Toward structurally defined carbon dots as ultracompact fluorescent probes, ACS Nano, 8(2014), No. 5, p. 4522. doi: 10.1021/nn406628s
      [44]
      S.L. Hu, A. Trinchi, P. Atkin, and I. Cole, Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light, Angew. Chem. Int. Ed., 54(2015), No. 10, p. 2970. doi: 10.1002/anie.201411004
      [45]
      H. Feng and Z.S. Qian, Functional carbon quantum dots: A versatile platform for chemosensing and biosensing, Chem. Rec., 18(2018), No. 5, p. 491. doi: 10.1002/tcr.201700055
      [46]
      T. Atabaev, Doped carbon dots for sensing and bioimaging applications: A minireview, Nanomaterials, 8(2018), No. 5, art. No. 342. doi: 10.3390/nano8050342
      [47]
      K.J. Mintz, B. Guerrero, and R.M. Leblanc, Photoinduced electron transfer in carbon dots with long-wavelength photoluminescence, J. Phys. Chem. C, 122(2018), No. 51, p. 29507. doi: 10.1021/acs.jpcc.8b06868
      [48]
      G.X. Liu, B.Q. Li, Y. Liu, Y.J. Feng, D.C. Jia, and Y. Zhou, Rapid and high yield synthesis of carbon dots with chelating ability derived from acrylamide/chitosan for selective detection of ferrous ions, Appl. Surf. Sci., 487(2019), p. 1167. doi: 10.1016/j.apsusc.2019.05.069
      [49]
      S. Kiran and R.D.K. Misra, Mechanism of intracellular detection of glucose through nonenzymatic and boronic acid functionalized carbon dots, J. Biomed. Mater. Res., 103(2015), No. 9, p. 2888. doi: 10.1002/jbm.a.35421
      [50]
      M.K. Barman and A. Patra, Current status and prospects on chemical structure driven photoluminescence behaviour of carbon dots, J. Photochem. Photobiol. C, 37(2018), p. 1. doi: 10.1016/j.jphotochemrev.2018.08.001
      [51]
      X.E. Li, J.A. Chu, Y.P. Cheng, F. Yang, and S.X. Xiong, Novel Prussian blue@Carbon-dots hybrid thin film: The impact of carbon-dots on material structure and electrochromic performance, Electrochim. Acta, 355(2020), art. No. 136659. doi: 10.1016/j.electacta.2020.136659
      [52]
      X.Y. Xu, R. Ray, Y.L. Gu, et al., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc., 126(2004), No. 40, p. 12736. doi: 10.1021/ja040082h
      [53]
      S. Dey, A. Govindaraj, K. Biswas, and C.N.R. Rao, Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples, Chem. Phys. Lett., 595-596(2014), p. 203. doi: 10.1016/j.cplett.2014.02.012
      [54]
      S.L. Hu, K.Y. Niu, J. Sun, J. Yang, N.Q. Zhao, and X.W. Du, One-step synthesis of fluorescent carbon nanoparticles by laser irradiation, J. Mater. Chem., 19(2009), No. 4, p. 484. doi: 10.1039/B812943F
      [55]
      J.G. Zhou, C. Booker, R.Y. Li, et al., An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs), J. Am. Chem. Soc., 129(2007), No. 4, p. 744. doi: 10.1021/ja0669070
      [56]
      L. Bao, Z.L. Zhang, Z.Q. Tian, et al., Electrochemical tuning of luminescent carbon nanodots: From preparation to luminescence mechanism, Adv. Mater., 23(2011), No. 48, p. 5801. doi: 10.1002/adma.201102866
      [57]
      H. Peng and J. Travas-Sejdic, Simple aqueous solution route to luminescent carbogenic dots from carbohydrates, Chem. Mater., 21(2009), No. 23, p. 5563. doi: 10.1021/cm901593y
      [58]
      R. Atchudan, T.N.J.I. Edison, D. Chakradhar, S. Perumal, J.J. Shim, and Y.R. Lee, Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications, Sens. Actuators B, 246(2017), p. 497. doi: 10.1016/j.snb.2017.02.119
      [59]
      B.Y. Wang, J.K. Yu, L.Z. Sui, et al., Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal, Adv. Sci., 8(2021), No. 1, art. No. 2001453. doi: 10.1002/advs.202001453
      [60]
      L.B. Tang, R.B. Ji, X.K. Cao, et al., Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots, ACS Nano, 6(2012), No. 6, p. 5102. doi: 10.1021/nn300760g
      [61]
      X.H. Wang, K.G. Qu, B.L. Xu, J.S. Ren, and X.G. Qu, Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents, J. Mater. Chem., 21(2011), No. 8, p. 2445. doi: 10.1039/c0jm02963g
      [62]
      Q. Li, Z.L. Bai, X.J. Xi, et al., Rapid microwave-assisted green synthesis of guanine-derived carbon dots for highly selective detection of Ag+ in aqueous solution, Spectrochim. Acta Part A, 248(2021), art. No. 119208. doi: 10.1016/j.saa.2020.119208
      [63]
      R.L. Liu, D.Q. Wu, S.H. Liu, K. Koynov, W. Knoll, and Q. Li, An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers, Angew. Chem. Int. Ed Engl., 48(2009), No. 25, p. 4598. doi: 10.1002/anie.200900652
      [64]
      J.H. Shen, Y.H. Zhu, X.L. Yang, J. Zong, J.M. Zhang, and C.Z. Li, One-pot hydrothermal synthesis of graphenequantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light, New J. Chem., 36(2012), No. 1, p. 97. doi: 10.1039/C1NJ20658C
      [65]
      P. Anilkumar, L. Cao, J.J. Yu, et al., Crosslinked carbon dots as ultra-bright fluorescence probes, Small, 9(2013), No. 4, p. 545. doi: 10.1002/smll.201202000
      [66]
      C.J. Liu, P. Zhang, X.Y. Zhai, et al., Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence, Biomaterials, 33(2012), No. 13, p. 3604. doi: 10.1016/j.biomaterials.2012.01.052
      [67]
      B. Liao, P. Long, B.Q. He, et al., Reversible fluorescence modulation of spiropyran-functionalized carbon nanoparticles, J. Mater. Chem. C, 1(2013), No. 23, p. 3716. doi: 10.1039/c3tc00906h
      [68]
      S.H. Miao, K. Liang, J.J. Zhu, B. Yang, D.Y. Zhao, and B. Kong, Hetero-atom-doped carbon dots: Doping strategies, properties and applications, Nano Today, 33(2020), art. No. 100879. doi: 10.1016/j.nantod.2020.100879
      [69]
      W.L. Wei, C. Xu, L. Wu, J.S. Wang, J.S. Ren, and X.G. Qu, Non-enzymatic-browning-reaction: A versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display, Sci. Rep., 4(2014), art. No. 3564. doi: 10.1038/srep03564
      [70]
      D. Sun, R. Ban, P.H. Zhang, G.H. Wu, J.R. Zhang, and J.J. Zhu, Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties, Carbon, 64(2013), p. 424. doi: 10.1016/j.carbon.2013.07.095
      [71]
      Y.K. Fu, G.M. Zeng, C. Lai, et al., Hybrid architectures based on noble metals and carbon-based dots nanomaterials: A review of recent progress in synthesis and applications, Chem. Eng. J., 399(2020), art. No. 125743. doi: 10.1016/j.cej.2020.125743
      [72]
      Q.S. Si, W.Q. Guo, H.Z. Wang, B.H. Liu, and N.Q. Ren, Carbon quantum dots-based semiconductor preparation methods, applications and mechanisms in environmental contamination, Chin. Chem. Lett., 31(2020), No. 10, p. 2556. doi: 10.1016/j.cclet.2020.08.036
      [73]
      J.C. Liu, N. Wang, Y.E. Yu, et al., Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes, Sci. Adv., 3(2017), No. 5, art. No. e1603171. doi: 10.1126/sciadv.1603171
      [74]
      Y.Q. Dong, J.H. Cai, Q.Q. Fang, X. You, and Y.W. Chi, Dual-emission of lanthanide metal–organic frameworks encapsulating carbon-based dots for ratiometric detection of water in organic solvents, Anal. Chem., 88(2016), No. 3, p. 1748. doi: 10.1021/acs.analchem.5b03974
      [75]
      S.Y. Lu, X.H. Zhao, S.J. Zhu, Y.B. Song, and B. Yang, Novel cookie-with-chocolate carbon dots displaying extremely acidophilic high luminescence, Nanoscale, 6(2014), No. 22, p. 13939. doi: 10.1039/C4NR03965C
      [76]
      X.X. Liu, C.L. Yang, B.Z. Zheng, et al., Green anhydrous synthesis of hydrophilic carbon dots on large-scale and their application for broad fluorescent pH sensing, Sens. Actuators B, 255(2018), p. 572. doi: 10.1016/j.snb.2017.08.101
      [77]
      S.M. Song, J.H. Hu, M.L. Li, X.J. Gong, C. Dong, and S.M. Shuang, Fe3+ and intracellular pH determination based on orange fluorescence carbon dots co-doped with boron, nitrogen and sulfur, Mater. Sci. Eng. C, 118(2021), art. No. 111478. doi: 10.1016/j.msec.2020.111478
      [78]
      M.J. Cui, Y. Yu, and Y.X. Zheng, Effective corrosion inhibition of carbon steel in hydrochloric acid by dopamine-produced carbon dots, Polymers, 13(2021), No. 12, art. No. 1923. doi: 10.3390/polym13121923
      [79]
      F.H. Niu, G.G. Zhou, J.W. Zhu, et al., Inhibition behavior of nitrogen-doped carbon dots on X80 carbon steel in acidic solution, J. Mol. Liq., 339(2021), art. No. 117171. doi: 10.1016/j.molliq.2021.117171
      [80]
      H.C. Zhao, T.Y. Sun, L.F. Huang, J.Y. Wei, and S.H. Qiu, A green strategy for nitrogen-doped polymer nanodots with high oxygen and chloride corrosion resistance in extremely acidic condition, Chem. Eng. J., 437(2022), art. No. 135242. doi: 10.1016/j.cej.2022.135242
      [81]
      Y.J. Qiang, S.T. Zhang, H.C. Zhao, B.C. Tan, and L.P. Wang, Enhanced anticorrosion performance of copper by novel N-doped carbon dots, Corros. Sci., 161(2019), art. No. 108193. doi: 10.1016/j.corsci.2019.108193
      [82]
      Y.W. Ye, D.P. Yang, H. Chen, et al., A high-efficiency corrosion inhibitor of N-doped citric acid-based carbon dots for mild steel in hydrochloric acid environment, J. Hazard. Mater., 381(2020), art. No. 121019. doi: 10.1016/j.jhazmat.2019.121019
      [83]
      Z.X. Liu, Y.W. Ye, and H. Chen, Corrosion inhibition behavior and mechanism of N-doped carbon dots for metal in acid environment, J. Clean. Prod., 270(2020), art. No. 122458. doi: 10.1016/j.jclepro.2020.122458
      [84]
      M.J. Cui, S.M. Ren, Q.J. Xue, H.C. Zhao, and L.P. Wang, Carbon dots as new eco-friendly and effective corrosion inhibitor, J. Alloys Compd., 726(2017), p. 680. doi: 10.1016/j.jallcom.2017.08.027
      [85]
      L.A. Pan, G.X. Li, Z.Y. Wang, et al., Carbon dots as environment-friendly and efficient corrosion inhibitors for Q235 steel in 1 M HCl, Langmuir, 37(2021), No. 49, p. 14336. doi: 10.1021/acs.langmuir.1c02182
      [86]
      V. Saraswat and M. Yadav, Improved corrosion resistant performance of mild steel under acid environment by novel carbon dots as green corrosion inhibitor, Colloids Surf. A, 627(2021), art. No. 127172. doi: 10.1016/j.colsurfa.2021.127172
      [87]
      D.P. Yang, Y.W. Ye, Y. Su, S. Liu, D.R. Gong, and H.C. Zhao, Functionalization of citric acid-based carbon dots by imidazole toward novel green corrosion inhibitor for carbon steel, J. Cleaner Prod., 229(2019), p. 180. doi: 10.1016/j.jclepro.2019.05.030
      [88]
      Y.W. Ye, D.P. Yang, and H. Chen, A green and effective corrosion inhibitor of functionalized carbon dots, J. Mater. Sci. Technol., 35(2019), No. 10, p. 2243. doi: 10.1016/j.jmst.2019.05.045
      [89]
      Y.X. Zeng, L. Kang, Y. Wu, et al., Melamine modified carbon dots as high effective corrosion inhibitor for Q235 carbon steel in neutral 3.5 wt% NaCl solution, J. Mol. Liq., 349(2022), art. No. 118108. doi: 10.1016/j.molliq.2021.118108
      [90]
      Y.W. Ye, Y.J. Zou, Z.L. Jiang, et al., An effective corrosion inhibitor of N doped carbon dots for Q235 steel in 1 M HCl solution, J. Alloys Compd., 815(2020), art. No. 152338. doi: 10.1016/j.jallcom.2019.152338
      [91]
      Y.W. Ye, Z.L. Jiang, Y.J. Zou, et al., Evaluation of the inhibition behavior of carbon dots on carbon steel in HCl and NaCl solutions, J. Mater. Sci. Technol., 43(2020), p. 144. doi: 10.1016/j.jmst.2020.01.025
      [92]
      Y.W. Ye, D.W. Zhang, Y.J. Zou, H.C. Zhao, and H. Chen, A feasible method to improve the protection ability of metal by functionalized carbon dots as environment-friendly corrosion inhibitor, J. Cleaner Prod., 264(2020), art. No. 121682. doi: 10.1016/j.jclepro.2020.121682
      [93]
      M.Y. Zhu, Z.Y. He, L. Guo, et al., Corrosion inhibition of eco-friendly nitrogen-doped carbon dots for carbon steel in acidic media: Performance and mechanism investigation, J. Mol. Liq., 342(2021), art. No. 117583. doi: 10.1016/j.molliq.2021.117583
      [94]
      M.Y. Zhu, L. Guo, Z.Y. He, R. Marzouki, R.H. Zhang, and E. Berdimurodov, Insights into the newly synthesized N-doped carbon dots for Q235 steel corrosion retardation in acidizing media: A detailed multidimensional study, J. Colloid Interface Sci., 608(2022), p. 2039. doi: 10.1016/j.jcis.2021.10.160
      [95]
      L.A. Pan, G.X. Li, Z.Y. Wang, et al., Nitrogen/sulfur co-doped carbon dots for enhancing anti-corrosion performance of Mg alloy in NaCl solution, ChemistrySelect, 6(2021), No. 41, p. 11337. doi: 10.1002/slct.202102286
      [96]
      S. Wan, H.K. Chen, B.K. Liao, and X.P. Guo, Adsorption and anticorrosion mechanism of glucose-based functionalized carbon dots for copper in neutral solution, J. Taiwan Inst. Chem. Eng., 129(2021), p. 289. doi: 10.1016/j.jtice.2021.10.001
      [97]
      Y. Zhang, S.T. Zhang, B.C. Tan, L. Guo, and H.T. Li, Solvothermal synthesis of functionalized carbon dots from amino acid as an eco-friendly corrosion inhibitor for copper in sulfuric acid solution, J. Colloid Interface Sci., 604(2021), p. 1. doi: 10.1016/j.jcis.2021.07.034
      [98]
      Y. Zhang, B.C. Tan, X. Zhang, L. Guo, and S.T. Zhang, Synthesized carbon dots with high N and S content as excellent corrosion inhibitors for copper in sulfuric acid solution, J. Mol. Liq., 338(2021), art. No. 116702. doi: 10.1016/j.molliq.2021.116702
      [99]
      Q.J. Xu, K. Ge, S.T. Zhang, and B.C. Tan, Understanding the adsorption and inhibitive properties of nitrogen-doped carbon dots for copper in 0.5 M H2SO4 solution, J. Taiwan Inst. Chem. Eng., 125(2021), p. 23. doi: 10.1016/j.jtice.2021.05.050
      [100]
      Z. Liu, X. Hao, Y. Li, and X.H. Zhang, Novel Ce@N-CDs as green corrosion inhibitor for metal in acidic environment, J. Mol. Liq., 349(2022), art. No. 118155. doi: 10.1016/j.molliq.2021.118155
      [101]
      M. Tabish, G. Yasin, M.J. Anjum, et al., Reviewing the current status of layered double hydroxide-based smart nanocontainers for corrosion inhibiting applications, J. Mater. Res. Technol., 10(2021), p. 390. doi: 10.1016/j.jmrt.2020.12.025
      [102]
      C. Verma, A. Alfantazi, and M.A. Quraishi, Quantum dots as ecofriendly and aqueous phase substitutes of carbon family for traditional corrosion inhibitors: A perspective, J. Mol. Liq., 343(2021), art. No. 117648. doi: 10.1016/j.molliq.2021.117648
      [103]
      S. Pourhashem, E. Ghasemy, A. Rashidi, and M.R. Vaezi, A review on application of carbon nanostructures as nanofiller in corrosion-resistant organic coatings, J. Coat. Technol. Res., 17(2020), No. 1, p. 19. doi: 10.1007/s11998-019-00275-6
      [104]
      L. Di, L. Meng, and S.N. Qu, Research progress on nitrogen-doped carbon nanodots, Chin. Opt., 13(2020), p. 899. doi: 10.37188/CO.2020-0035
      [105]
      S.T. Kalajahi, B. Rasekh, F. Yazdian, J. Neshati, and L. Taghavi, Green mitigation of microbial corrosion by copper nanoparticles doped carbon quantum dots nanohybrid, Environ. Sci. Pollut. Res., 27(2020), No. 32, p. 40537. doi: 10.1007/s11356-020-10043-4
      [106]
      F. Anindita, N. Darmawan, and Z.A. Mas’ud, Fluorescence carbon dots from durian as an eco-friendly inhibitor for copper corrosion, [in] AIP Conference Proceedings, Geneva, 2018, p. 020008.
      [107]
      J.X. Luo, X. Cheng, X.H. Chen, et al., The effect of N and S ratios in N, S co-doped carbon dot inhibitor on metal protection in 1 M HCl solution, J. Taiwan Inst. Chem. Eng., 127(2021), p. 387. doi: 10.1016/j.jtice.2021.08.023
      [108]
      S.Y. Cao, D. Liu, T.X. Wang, et al., Nitrogen-doped carbon dots as high-effective inhibitors for carbon steel in acidic medium, Colloids Surf. A, 616(2021), art. No. 126280. doi: 10.1016/j.colsurfa.2021.126280
      [109]
      M.J. Cui and X. Li, Nitrogen and sulfur Co-doped carbon dots as ecofriendly and effective corrosion inhibitors for Q235 carbon steel in 1 M HCl solution, RSC Adv., 11(2021), No. 35, p. 21607. doi: 10.1039/D1RA02775A
      [110]
      Y.W. Ye, H. Chen, Y.J. Zou, and H.C. Zhao, Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating, J. Mater. Sci. Technol., 67(2021), p. 226. doi: 10.1016/j.jmst.2020.06.023
      [111]
      V. Saraswat and M. Yadav, Carbon dots as green corrosion inhibitor for mild steel in HCl solution, ChemistrySelect, 5(2020), No. 25, p. 7347. doi: 10.1002/slct.202000625
      [112]
      X.K. Xu, Y.D. Li, G.Q. Hu, et al., Surface functional carbon dots: Chemical engineering applications beyond optical properties, J. Mater. Chem. C, 8(2020), No. 46, p. 16282. doi: 10.1039/D0TC03805A
      [113]
      L.W. Ma, J.K. Wang, Y.J. Wang, et al., Enhanced active corrosion protection coatings for aluminum alloys with two corrosion inhibitors co-incorporated in nanocontainers, Corros. Sci., 208(2022), art. No. 110663. doi: 10.1016/j.corsci.2022.110663
      [114]
      J.K. Wang, Y. Hang, L.W. Ma, X. Guo, S.H. Wu, C.H. Ren, and D.W. Zhang, Corrosion-sensing and self-healing dual-function coating based on 1,10-phenanthroline loaded urea formaldehyde microcapsules for carbon steel protection, Colloids Surf. A, 652(2022), p. 129855. doi: 10.1016/j.colsurfa.2022.129855
      [115]
      B. Ali Al Jahdaly, M.F. Elsadek, B.M. Ahmed, M.F. Farahat, M.M. Taher, and A.M. Khalil, Outstanding graphene quantum dots from carbon source for biomedical and corrosion inhibition applications: A review, Sustainability, 13(2021), No. 4, art. No. 2127. doi: 10.3390/su13042127
      [116]
      Z. Chen, M. Wang, A.A. Fadhil, et al., Preparation, characterization, and corrosion inhibition performance of graphene oxide quantum dots for Q235 steel in 1 M hydrochloric acid solution, Colloids Surf. A, 627(2021), art. No. 127209. doi: 10.1016/j.colsurfa.2021.127209
      [117]
      Y.B. Wang, Q. Chang, and S.L. Hu, Carbon dots with concentration-tunable multicolored photoluminescence for simultaneous detection of Fe3+ and Cu2+ ions, Sens. Actuators B, 253(2017), p. 928. doi: 10.1016/j.snb.2017.07.031
      [118]
      Z.X. Han, K. Wang, F.L. Du, Z.M. Yin, Z. Xie, and S.Y. Zhou, High efficiency red emission carbon dots based on phenylene diisocyanate for trichromatic white and red LEDs, J. Mater. Chem. C, 6(2018), No. 36, p. 9631. doi: 10.1039/C8TC03497D
      [119]
      Y.F. Tao, J. Lin, D.Y. Wang, and Y.H. Wang, Na+-functionalized carbon dots with aggregation-induced and enhanced cyan emission, J. Colloid Interface Sci., 588(2021), p. 469. doi: 10.1016/j.jcis.2020.12.104
      [120]
      V. Saraswat, R. Kumari, and M. Yadav, Novel carbon dots as efficient green corrosion inhibitor for mild steel in HCl solution: Electrochemical, gravimetric and XPS studies, J. Phys. Chem. Solids, 160(2022), art. No. 110341. doi: 10.1016/j.jpcs.2021.110341
      [121]
      H. Khatoon, S. Iqbal, and S. Ahmad, Influence of carbon nanodots encapsulated polycarbazole hybrid on the corrosion inhibition performance of polyurethane nanocomposite coatings, New J. Chem., 43(2019), No. 26, p. 10278. doi: 10.1039/C9NJ01671F
      [122]
      Y. Bao, Y. Yan, Y.M. Wei, J.Z. Ma, W.B. Zhang, and C. Liu, Salt-responsive ZnO microcapsules loaded with nitrogen-doped carbon dots for enhancement of corrosion durability, J. Mater. Sci., 56(2021), No. 8, p. 5143. doi: 10.1007/s10853-020-05565-8
      [123]
      J.H. Ding, H.R. Zhao, and H.B. Yu, Structure and performance insights in carbon dots-functionalized MXene-epoxy ultrathin anticorrosion coatings, Chem. Eng. J., 430(2022), art. No. 132838. doi: 10.1016/j.cej.2021.132838
      [124]
      J.A. Gao, M.X. Wu, D.H. Dai, et al., N-doped carbon dots covalently functionalized with pillar[5]arenes for Fe3+ sensing, Beilstein J. Org. Chem., 15(2019), p. 1262. doi: 10.3762/bjoc.15.123
      [125]
      L.J. Liu, K.H. Qin, S.A. Yin, et al., Bifunctional carbon dots derived from an anaerobic bacterium of Porphyromonas gingivalis for selective detection of Fe 3+ and bioimaging, Photochem. Photobiol., 97(2021), No. 3, p. 574. doi: 10.1111/php.13360
      [126]
      A.W. Zhu, Q. Qu, X.L. Shao, B. Kong, and Y. Tian, Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions, Angew. Chem. Int. Ed Engl., 51(2012), No. 29, p. 7185. doi: 10.1002/anie.201109089
      [127]
      D. Xu, Q.L. Lin, and H. Chang, Recent advances and sensing applications of carbon dots, Small Methods, 4(2020), No. 4, art. No. 1900387.
      [128]
      J. Woo, Y. Song, J. Ahn, and H. Kim, Green one-pot preparation of carbon dots (CD)-embedded cellulose transparent film for Fe3+ indicator using ionic liquid, Cellulose, 27(2020), No. 8, p. 4609. doi: 10.1007/s10570-020-03099-5
      [129]
      Y. Zhang, Y.T. Xiao, Y.J. Zhang, and Y.T. Wang, Carbon quantum dots as fluorescence turn-off-on probe for detecting Fe3+ and ascorbic acid, J. Nanosci. Nanotechnol., 20(2020), No. 6, p. 3340. doi: 10.1166/jnn.2020.17412
      [130]
      Y.H. Zhang, H.X. Qin, Y.T. Huang, et al., Highly fluorescent nitrogen and boron doped carbon quantum dots for selective and sensitive detection of Fe3+, J. Mater. Chem. B, 9(2021), No. 23, p. 4654. doi: 10.1039/D1TB00371B
      [131]
      Q.L. Wen, Z.F. Pu, Y.J. Yang, et al., Hyaluronic acid as a material for the synthesis of fluorescent carbon dots and its application for selective detection of Fe3+ ion and folic acid, Microchem. J., 159(2020), art. No. 105364. doi: 10.1016/j.microc.2020.105364
      [132]
      Q.X. An, Q.L. Lin, X.H. Huang, et al., Electrochemical synthesis of carbon dots with a Stokes shift of 309 nm for sensing of Fe3+ and ascorbic acid, Dyes Pigm., 185(2021), art. No. 108878. doi: 10.1016/j.dyepig.2020.108878
      [133]
      Z. Liu, R.N. Jia, Y. Jian, et al., N-doped carbon dots as a multifunctional platform for real-time corrosion monitoring and inhibition, Colloids Surf. A, 650(2022), art. No. 129499. doi: 10.1016/j.colsurfa.2022.129499
      [134]
      S.H. Wu, J.K. Wang, T. Liu, X. Guo, and L.W. Ma, Sulfosalicylic acid modified carbon dots as effective corrosion inhibitor and fluorescent corrosion indicator for carbon steel in HCl solution, Colloids Surf. A, 661(2023), art. No. 130951. doi: 10.1016/j.colsurfa.2023.130951
      [135]
      Z. Liu, R.N. Jia, F. Chen, et al., Electrochemical process of early-stage corrosion detection based on N-doped carbon dots with superior Fe3+ responsiveness, J. Colloid Interface Sci., 606(2022), p. 567. doi: 10.1016/j.jcis.2021.08.058
      [136]
      L.Y. Fang, Q. Xu, X. Zheng, et al., Soy flour-derived carbon dots: Facile preparation, fluorescence enhancement, and sensitive Fe3+ detection, J. Nanopart. Res., 18(2016), No. 8, p. 224. doi: 10.1007/s11051-016-3521-z
      [137]
      Y.Z. Fu, S.J. Zhao, S.L. Wu, et al., A carbon dots-based fluorescent probe for turn-on sensing of ampicillin, Dyes Pigm., 172(2020), art. No. 107846. doi: 10.1016/j.dyepig.2019.107846
      [138]
      J.B. Li, J. Lv, L.P. Fu, M.J. Tang, and X.D. Wu, New ecofriendly nitrogen-doped carbon quantum dots as effective corrosion inhibitor for saturated CO2 3% NaCl solution, Russ. J. Appl. Chem., 93(2020), No. 3, p. 380. doi: 10.1134/S10704272200300106
      [139]
      Z.Y. Zhang, X.Y. Chen, and J.L. Wang, Bright blue emissions N-doped carbon dots from a single precursor and their application in the trace detection of Fe3+ and F, Inorg. Chim. Acta, 515(2021), art. No. 120087. doi: 10.1016/j.ica.2020.120087
      [140]
      R. Kagit, M. Yildirim, O. Ozay, S. Yesilot, and H. Ozay, Phosphazene based multicentered naked-eye fluorescent sensor with high selectivity for Fe3+ ions, Inorg. Chem., 53(2014), No. 4, p. 2144. doi: 10.1021/ic402783x
      [141]
      Y. Hu, F. Zhao, S.L. Hu, Y.Y. Dong, D.Z. Li, and Z.H. Su, A novel turn-on colorimetric and fluorescent sensor for Fe3+ and its application in living cells, J. Photochem. Photobiol. A, 332(2017), p. 351. doi: 10.1016/j.jphotochem.2016.09.006
      [142]
      J.J. Wang, T. Wei, F. Ma, T.D. Li, and Q.F. Niu, A novel fluorescent and colorimetric dual-channel sensor for the fast, reversible and simultaneous detection of Fe3+ and Cu2+ based on terthiophene derivative with high sensitivity and selectivity, J. Photochem. Photobiol. A, 383(2019), art. No. 111982. doi: 10.1016/j.jphotochem.2019.111982
      [143]
      Q.F. Yao, B.Z. Lü, C.D. Ji, Y. Cai, and M.Z. Yin, Supramolecular host–guest system as ratiometric Fe3+ ion sensor based on water-soluble pillar[5]arene, ACS Appl. Mater. Interfaces, 9(2017), No. 41, p. 36320. doi: 10.1021/acsami.7b12063
      [144]
      K. Zheng, K.L. Lou, C.H. Zeng, S.S. Li, Z.W. Nie, and S.L. Zhong, Hybrid membrane of agarose and lanthanide coordination polymer: A selective and sensitive Fe3+ sensor, Photochem. Photobiol., 91(2015), No. 4, p. 814. doi: 10.1111/php.12460
      [145]
      Z.Z. Nan, C.C. Hao, X.G. Zhang, H.Y. Liu, and R.G. Sun, Carbon quantum dots (CQDs) modified ZnO/CdS nanoparticles based fluorescence sensor for highly selective and sensitive detection of Fe(III), Spectrochim. Acta Part A, 228(2020), art. No. 117717. doi: 10.1016/j.saa.2019.117717
      [146]
      J. Yu, C.X. Xu, Z.S. Tian, Y. Lin, and Z.L. Shi, Facilely synthesized N-doped carbon quantum dots with high fluorescent yield for sensing Fe3+, New J. Chem., 40(2016), No. 3, p. 2083. doi: 10.1039/C5NJ03252K
      [147]
      M.L. Liu, Y.H. Xu, F.S. Niu, J.J. Gooding, and J.Q. Liu, Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging, Analyst, 141(2016), No. 9, p. 2657. doi: 10.1039/C5AN02231B
      [148]
      Y. Song, C.Z. Zhu, J.H. Song, H. Li, D. Du, and Y.H. Lin, Drug-derived bright and color-tunable N-doped carbon dots for cell imaging and sensitive detection of Fe3+ in living cells, ACS Appl. Mater. Interfaces, 9(2017), No. 8, p. 7399. doi: 10.1021/acsami.6b13954
      [149]
      S.Q. Liu, R.L. Liu, X. Xing, C.Q. Yang, Y. Xu, and D.Q. Wu, Highly photoluminescent nitrogen-rich carbon dots from melamine and citric acid for the selective detection of iron(III) ion, RSC Adv., 6(2016), No. 38, p. 31884. doi: 10.1039/C5RA26521E
      [150]
      L. Qiu, C.C. Zhu, H.C. Chen, M. Hu, W.J. He, and Z.J. Guo, A turn-on fluorescent Fe3+ sensor derived from an anthracene-bearing bisdiene macrocycle and its intracellular imaging application, Chem. Commun., 50(2014), No. 35, p. 4631. doi: 10.1039/c3cc49482a
      [151]
      T.T. Ma, X. Zhao, Y. Matsuo, et al., Fluorescein-based fluorescent porous aromatic framework for Fe3+ detection with high sensitivity, J. Mater. Chem. C, 7(2019), No. 8, p. 2327. doi: 10.1039/C8TC06288A
      [152]
      S.R. Liu and S.P. Wu, New water-soluble highly selective fluorescent chemosensor for Fe (III) ions and its application to living cell imaging, Sens. Actuators B, 171-172(2012), p. 1110. doi: 10.1016/j.snb.2012.06.041
      [153]
      L.B. Zheng, P. Qi, and D. Zhang, Identification of bacteria by a fluorescence sensor array based on three kinds of receptors functionalized carbon dots, Sens. Actuators B, 286(2019), p. 206. doi: 10.1016/j.snb.2019.01.147
      [154]
      B. De and N. Karak, A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice, RSC Adv., 3(2013), No. 22, p. 8286. doi: 10.1039/c3ra00088e
      [155]
      Z.L. Wu, M.X. Gao, T.T. Wang, X.Y. Wan, L.L. Zheng, and C.Z. Huang, A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots, Nanoscale, 6(2014), No. 7, p. 3868. doi: 10.1039/C3NR06353D
      [156]
      A. Barati, M. Shamsipur, and H. Abdollahi, Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH, Anal. Chim. Acta, 931(2016), p. 25. doi: 10.1016/j.aca.2016.05.011
      [157]
      F.K. Du, J.S. Xu, F. Zeng, and S.Z. Wu, Preparation of a multifunctional nano-carrier system based on carbon dots with pH-triggered drug release, Acta Chim. Sinica, 74(2016), No. 3, art. No. 241. doi: 10.6023/A15120780
      [158]
      C. Liu, M.L. Yang, J. Hu, et al., Quantitatively switchable pH-sensitive photoluminescence of carbon nanodots, J. Phys. Chem. Lett., 12(2021), No. 11, p. 2727. doi: 10.1021/acs.jpclett.1c00287
      [159]
      L. Li, L.H. Shi, J. Jia, et al., Red fluorescent carbon dots for tetracycline antibiotics and pH discrimination from aggregation-induced emission mechanism, Sens. Actuators B, 332(2021), art. No. 129513. doi: 10.1016/j.snb.2021.129513
      [160]
      X.Q. Zhang, C.Y. Chen, D.P. Peng, et al., pH-Responsive carbon dots with red emission for real-time and visual detection of amines, J. Mater. Chem. C, 8(2020), No. 33, p. 11563. doi: 10.1039/D0TC02597F

    Catalog


    • /

      返回文章
      返回