留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 12
Dec.  2023

图(10)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  863
  • HTML全文浏览量:  272
  • PDF下载量:  45
  • 被引次数: 0
Bei Tang, Jinlong Fu, Jingkai Feng, Xiting Zhong, Yangyang Guo, and Haili Wang, Effect of Zn content on microstructure, mechanical properties and thermal conductivity of extruded Mg–Zn–Ca–Mn alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2411-2420. https://doi.org/10.1007/s12613-023-2676-8
Cite this article as:
Bei Tang, Jinlong Fu, Jingkai Feng, Xiting Zhong, Yangyang Guo, and Haili Wang, Effect of Zn content on microstructure, mechanical properties and thermal conductivity of extruded Mg–Zn–Ca–Mn alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2411-2420. https://doi.org/10.1007/s12613-023-2676-8
引用本文 PDF XML SpringerLink
研究论文

Zn含量对挤压态Mg–Zn–Ca–Mn合金组织、力学性能及导热率的影响



  • 通讯作者:

    付金龙    E-mail: jinlongsjz@126.com

文章亮点

  • (1) 研究了Zn含量对Mg–Zn–Ca–Mn合金微观组织的影响规律。
  • (2) 研究了Zn含量对Mg–Zn–Ca–Mn合金力学性能及导热率的影响。
  • (3) 揭示了兼顾力学性能与导热性能的镁合金微观组织及其增强增效机制。
  • 镁合金以其密度低、导热性能良好等优点,成为5G通讯中电子元器件散热部的潜在应用材料。然而,镁合金的力学性能一般较低,如何在保证镁合金导热率的前提下,进一步提升合金的强度和塑性是目前相关研究面临的主要问题。本文旨在开发一种兼顾强度、塑性以及导热率的Mg–Zn–Ca–Mn合金并阐明其增强增效机制。本文通过近固相线温度低速大应变挤压的方法制备了不同Zn含量的Mg–Zn–Ca–Mn合金,并通过显微组织观察、拉伸性能测试和热导率测试研究了Mg–xZn–0.4Ca–0.2Mn(x = 2wt%, 4wt%, 6wt%)合金的组织(包括第二相、晶粒尺寸和织构)与强度、塑性和导热率的关系。研究结果表明,挤压态合金呈现一种双模态组织,即拉长的粗大变形晶粒包裹在细小的再结晶晶粒基体中,这种异质结构使得挤压态合金具有优异的强度与塑性协同提升效果。对于Mg–Zn–Ca–Mn合金,当Zn含量从2wt%提升至6wt%时,合金中的第二相分数从4.5%增加至8.1%,从而导致合金的屈服强度提升,延伸率下降。此外,Zn含量的增加导致固溶在基体中的Zn原子含量增加,从而增加晶格畸变程度,阻碍电子的运动,造成导热率的下降。挤压态合金Mg–2Zn–0.4Ca–0.2Mn合金呈现出优异的室温延伸率(27.7%)和热导率(139.2 W/(m·K)),以及良好的抗拉强度(244.0 MPa)。本文的试验结果进一步证明,在低合金化的基础上,通过高温低速大变形量塑性变形,制备包含随机取向的细小再结晶晶粒和少量强取向的粗大变形晶粒的双模态组织,并通过合金成分设计减少固溶元素的含量,是综合提高合金强度、延伸率以及导热性能的有效途径。
  • Research Article

    Effect of Zn content on microstructure, mechanical properties and thermal conductivity of extruded Mg–Zn–Ca–Mn alloys

    + Author Affiliations
    • Mg–Zn–Ca–Mn series alloys are developed as promising candidates of 5G communication devices with excellent thermal conductivities, great ductility, and acceptable strength. In present paper, Mg–xZn–0.4Ca–0.2Mn (x = 2wt%, 4wt%, 6wt%) alloys were prepared by a near-solidus extrusion and the effect of Zn content on mechanical and thermal properties were investigated. The results showed that the addition of minor Ca led to the formation of Ca2Mg6Zn3 eutectic phase at grain boundaries. A type of bimodal microstructure occurred in the as-extruded alloys, where elongated coarse deformed grains were embedded in refined recrystallized grains matrix. Correspondingly, both yield strength and ductility of the alloys were significantly enhanced after extrusion due to the great grain refinement. Specially, higher Zn content led to the increment in yield strength and a slight reduction in elongation due to the larger fractions of second phase particles. The room temperature thermal conductivity of as-extruded alloys was also improved compared with that of as-cast counterparts. The increment of Zn content decreased the thermal conductivity of both as-cast and as-extruded alloys, which was due to the increased second phase fraction and solution atoms in the matrix, that hindering the motion of electrons. The as-extruded Mg–2Zn–0.4Ca–0.2Mn (wt%) alloy exhibited the highest elongation of 27.7% and thermal conductivity of 139.2 W/(m·K), combined with an acceptable ultimate tensile strength of 244.0 MPa. The present paper provides scientific guidance for the preparation of lightweight materials with high ductility and high thermal conductivity.
    • loading
    • Supplementary Information-s12613-023-2676-8.docx
    • [1]
      A. Mazloum, V. Oddone, S. Reich, and I. Sevostianov, Connection between strength and thermal conductivity of metal matrix composites with uniform distribution of graphite flakes, Int. J. Eng. Sci., 139(2019), p. 70. doi: 10.1016/j.ijengsci.2019.01.008
      [2]
      J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
      [3]
      X.Q. Zeng, J. Wang, T. Ying, and W.J. Ding, Recent progress on thermal conductivity of magnesium and its alloys, Acta Metall. Sin., 58(2022), No. 4, p. 400.
      [4]
      J.W. Yuan, T. Li, X.G. Li, et al., Homogenizing heat treatment and thermal conductivity of Mg–4Zn–1Mn magnesium alloy, Trans. Mater. Heat Treat., 33(2012), No. 4, p. 27.
      [5]
      S.B. Li, X.Y. Yang, J.T. Hou, and W.B. Du, A review on thermal conductivity of magnesium and its alloys, J. Magnes. Alloys, 8(2020), No. 1, p. 78. doi: 10.1016/j.jma.2019.08.002
      [6]
      X. Du, W.B. Du, Z.H. Wang, K. Liu, and S.B. Li, Simultaneously improved mechanical and thermal properties of Mg–Zn–Zr alloy reinforced by ultra-low content of graphene nanoplatelets, Appl. Surf. Sci., 536(2021), art. No. 147791. doi: 10.1016/j.apsusc.2020.147791
      [7]
      H.C. Li, X.R. Zhu, Y. Zhang, et al., Thermal conductivity and mechanical properties of as-cast and as-extruded Mg–Zn–Mn alloys, Mater. Res., 22(2019), No. 6, art. No. e20190430. doi: 10.1590/1980-5373-mr-2019-0430
      [8]
      J.W. Yuan, K. Zhang, X.H. Zhang, et al., Thermal characteristics of Mg–Zn–Mn alloys with high specific strength and high thermal conductivity, J. Alloys Compd., 578(2013), p. 32. doi: 10.1016/j.jallcom.2013.03.184
      [9]
      H.C. Li, X.R. Zhu, Y. Zhang, et al., Microstructure, thermal conductivity and mechanical properties of Mg–Zn–Mn–Y quaternary alloys, JOM, 72(2020), No. 4, p. 1580. doi: 10.1007/s11837-019-03967-x
      [10]
      W.P. Zhang, M.L. Ma, J.W. Yuan, et al., Microstructure and thermophysical properties of Mg–2Zn–xCu alloys, Trans. Nonferrous Met. Soc. China, 30(2020), No. 7, p. 1803. doi: 10.1016/S1003-6326(20)65340-7
      [11]
      P. Duley, S. Sanyal, T.K. Bandyopadhyay, and S. Mandal, Homogenization-induced age-hardening behavior and room temperature mechanical properties of Mg–4Zn–0.5Ca–0.16Mn (wt%) alloy, Mater. Des., 164(2019), art. No. 107554. doi: 10.1016/j.matdes.2018.107554
      [12]
      Y.Z. Du, M.Y. Zheng, C. Xu, et al., Microstructures and mechanical properties of as-cast and as-extruded Mg–4.50Zn–1.13Ca (wt%) alloys, Mater. Sci. Eng. A, 576(2013), p. 6. doi: 10.1016/j.msea.2013.03.034
      [13]
      B. Kim, C.H. Hong, J.C. Kim, et al., Factors affecting the grain refinement of extruded Mg–6Zn–0.5Zr alloy by Ca addition, Scripta Mater., 187(2020), p. 24. doi: 10.1016/j.scriptamat.2020.06.001
      [14]
      T. Xie, Y.F. Wang, K. Liu, S.B. Li, X.M. Zhu, and W.B. Du, Microstructure and thermal conductivity of Mg–4Zn–xCa alloys, Shanghai Met., 44(2022), No. 4, p. 1.
      [15]
      X. Chen, D.F. Zhang, J.Y. Xu, et al., Improvement of mechanical properties of hot extruded and age treated Mg–Zn–Mn–Ca alloy through Sn addition, J. Alloys Compd., 850(2021), art. No. 156711. doi: 10.1016/j.jallcom.2020.156711
      [16]
      L.Q. Zhao, C. Wang, J.C. Chen, et al., Development of weak-textured and high-performance Mg–Zn–Ca alloy sheets based on Zn content optimization, J. Alloys Compd., 849(2020), art. No. 156640. doi: 10.1016/j.jallcom.2020.156640
      [17]
      W. Rong, Y. Zhang, Y.J. Wu, et al., The role of bimodal-grained structure in strengthening tensile strength and decreasing yield asymmetry of Mg–Gd–Zn–Zr alloys, Mater. Sci. Eng. A, 740-741(2019), p. 262. doi: 10.1016/j.msea.2017.09.125
      [18]
      L.Y. Jia, W.B. Du, J.L. Fu, et al., Obtaining ultra-high strength and ductility in a Mg–Gd–Er–Zn–Zr alloy via extrusion, pre-deformation and two-stage aging, Acta Metall. Sin. (Engl. Lett.), 34(2021), No. 1, p. 39.
      [19]
      W. Fu, P.F. Dang, S.W. Guo, et al., Heterogeneous fiberous structured Mg–Zn–Zr alloy with superior strength–ductility synergy, J. Mater. Sci. Technol., 134(2023), p. 67. doi: 10.1016/j.jmst.2022.06.021
      [20]
      O. Sitdikov, R. Garipova, E. Avtokratova, O. Mukhametdinova, and M. Markushev, Effect of temperature of isothermal multidirectional forging on microstructure development in the Al–Mg alloy with nano-size aluminides of Sc and Zr, J. Alloys Compd., 746(2018), p. 520. doi: 10.1016/j.jallcom.2018.02.277
      [21]
      S.J. Lee, Y.J. Kim, J.H. Lee, and S.H. Park, Effect of rolling temperature on the microstructural characteristics of high-speed-rolled Mg alloy with initial non-basal texture, Korean J. Met. Mater., 57(2019), No. 8, p. 482. doi: 10.3365/KJMM.2019.57.8.482
      [22]
      M. Yamasaki and Y. Kawamura, Thermal diffusivity and thermal conductivity of Mg–Zn–rare earth element alloys with long-period stacking ordered phase, Scripta Mater., 60(2009), No. 4, p. 264. doi: 10.1016/j.scriptamat.2008.10.022
      [23]
      C. Wang, T.J. Luo, Y.T. Liu, T. Lin, and Y.S. Yang, Microstructure and mechanical properties of Mg–5Zn–3.5Sn–1Mn–0.5Ca–0.5Cu alloy, Mater. Charact., 147(2019), p. 406. doi: 10.1016/j.matchar.2018.11.029
      [24]
      T.S. Zhao, Y.B. Hu, F.S. Pan, et al., Effect of Zn content on the microstructure and mechanical properties of Mg–Al–Sn–Mn alloys, Materials, 12(2019), No. 19, art. No. 3102. doi: 10.3390/ma12193102
      [25]
      Y.F. Wang, F. Zhang, Y.T. Wang, et al., Effect of Zn content on the microstructure and mechanical properties of Mg–Gd–Y–Zr alloys, Mater. Sci. Eng. A, 745(2019), p. 149. doi: 10.1016/j.msea.2018.12.088
      [26]
      Y.N. Wang and J.C. Huang, Texture analysis in hexagonal materials, Mater. Chem. Phys., 81(2003), No. 1, p. 11. doi: 10.1016/S0254-0584(03)00168-8
      [27]
      C.M. Wang, Y.G. Chen, and S.F. Xiao, Situation of research and development of thermal conductive magnesium alloys, Rare Met. Mater. Eng., 44(2015), No. 10, p. 2596.
      [28]
      L.P. Zhong, J. Peng, M. Li, Y.J. Wang, Y. Lu, and F.S. Pan, Effect of Ce addition on the microstructure, thermal conductivity and mechanical properties of Mg–0.5Mn alloys, J. Alloys Compd., 661(2016), p. 402. doi: 10.1016/j.jallcom.2015.11.107
      [29]
      L. Zhong, J. Peng, Y. Sun, Y. Wang, Y. Lu, and F. Pan, Microstructure and thermal conductivity of as-cast and as-extruded binary Mg–Mn alloys, Mater. Sci. Technol., 33(2017), No. 1, p. 92. doi: 10.1080/02670836.2016.1161130
      [30]
      J.T. Hou, W.B. Du, Z.H. Wang, S.B. Li, K. Liu, and X. Du, Combination of enhanced thermal conductivity and strength of MWCNTs reinforced Mg–6Zn matrix composite, J. Alloys Compd., 838(2020), art. No. 155573. doi: 10.1016/j.jallcom.2020.155573
      [31]
      T. Ying, H. Chi, M.Y. Zheng, Z.T. Li, and C. Uher, Low-temperature electrical resistivity and thermal conductivity of binary magnesium alloys, Acta Mater., 80(2014), p. 288. doi: 10.1016/j.actamat.2014.07.063
      [32]
      K. Yang, H.C. Pan, S. Du, et al., Low-cost and high-strength Mg–Al–Ca–Zn–Mn wrought alloy with balanced ductility, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1396. doi: 10.1007/s12613-021-2395-y

    Catalog


    • /

      返回文章
      返回