Cite this article as: |
Bei Tang, Jinlong Fu, Jingkai Feng, Xiting Zhong, Yangyang Guo, and Haili Wang, Effect of Zn content on microstructure, mechanical properties and thermal conductivity of extruded Mg–Zn–Ca–Mn alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2411-2420. https://doi.org/10.1007/s12613-023-2676-8 |
付金龙 E-mail: jinlongsjz@126.com
Supplementary Information-s12613-023-2676-8.docx |
[1] |
A. Mazloum, V. Oddone, S. Reich, and I. Sevostianov, Connection between strength and thermal conductivity of metal matrix composites with uniform distribution of graphite flakes, Int. J. Eng. Sci., 139(2019), p. 70. doi: 10.1016/j.ijengsci.2019.01.008
|
[2] |
J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
|
[3] |
X.Q. Zeng, J. Wang, T. Ying, and W.J. Ding, Recent progress on thermal conductivity of magnesium and its alloys, Acta Metall. Sin., 58(2022), No. 4, p. 400.
|
[4] |
J.W. Yuan, T. Li, X.G. Li, et al., Homogenizing heat treatment and thermal conductivity of Mg–4Zn–1Mn magnesium alloy, Trans. Mater. Heat Treat., 33(2012), No. 4, p. 27.
|
[5] |
S.B. Li, X.Y. Yang, J.T. Hou, and W.B. Du, A review on thermal conductivity of magnesium and its alloys, J. Magnes. Alloys, 8(2020), No. 1, p. 78. doi: 10.1016/j.jma.2019.08.002
|
[6] |
X. Du, W.B. Du, Z.H. Wang, K. Liu, and S.B. Li, Simultaneously improved mechanical and thermal properties of Mg–Zn–Zr alloy reinforced by ultra-low content of graphene nanoplatelets, Appl. Surf. Sci., 536(2021), art. No. 147791. doi: 10.1016/j.apsusc.2020.147791
|
[7] |
H.C. Li, X.R. Zhu, Y. Zhang, et al., Thermal conductivity and mechanical properties of as-cast and as-extruded Mg–Zn–Mn alloys, Mater. Res., 22(2019), No. 6, art. No. e20190430. doi: 10.1590/1980-5373-mr-2019-0430
|
[8] |
J.W. Yuan, K. Zhang, X.H. Zhang, et al., Thermal characteristics of Mg–Zn–Mn alloys with high specific strength and high thermal conductivity, J. Alloys Compd., 578(2013), p. 32. doi: 10.1016/j.jallcom.2013.03.184
|
[9] |
H.C. Li, X.R. Zhu, Y. Zhang, et al., Microstructure, thermal conductivity and mechanical properties of Mg–Zn–Mn–Y quaternary alloys, JOM, 72(2020), No. 4, p. 1580. doi: 10.1007/s11837-019-03967-x
|
[10] |
W.P. Zhang, M.L. Ma, J.W. Yuan, et al., Microstructure and thermophysical properties of Mg–2Zn–xCu alloys, Trans. Nonferrous Met. Soc. China, 30(2020), No. 7, p. 1803. doi: 10.1016/S1003-6326(20)65340-7
|
[11] |
P. Duley, S. Sanyal, T.K. Bandyopadhyay, and S. Mandal, Homogenization-induced age-hardening behavior and room temperature mechanical properties of Mg–4Zn–0.5Ca–0.16Mn (wt%) alloy, Mater. Des., 164(2019), art. No. 107554. doi: 10.1016/j.matdes.2018.107554
|
[12] |
Y.Z. Du, M.Y. Zheng, C. Xu, et al., Microstructures and mechanical properties of as-cast and as-extruded Mg–4.50Zn–1.13Ca (wt%) alloys, Mater. Sci. Eng. A, 576(2013), p. 6. doi: 10.1016/j.msea.2013.03.034
|
[13] |
B. Kim, C.H. Hong, J.C. Kim, et al., Factors affecting the grain refinement of extruded Mg–6Zn–0.5Zr alloy by Ca addition, Scripta Mater., 187(2020), p. 24. doi: 10.1016/j.scriptamat.2020.06.001
|
[14] |
T. Xie, Y.F. Wang, K. Liu, S.B. Li, X.M. Zhu, and W.B. Du, Microstructure and thermal conductivity of Mg–4Zn–xCa alloys, Shanghai Met., 44(2022), No. 4, p. 1.
|
[15] |
X. Chen, D.F. Zhang, J.Y. Xu, et al., Improvement of mechanical properties of hot extruded and age treated Mg–Zn–Mn–Ca alloy through Sn addition, J. Alloys Compd., 850(2021), art. No. 156711. doi: 10.1016/j.jallcom.2020.156711
|
[16] |
L.Q. Zhao, C. Wang, J.C. Chen, et al., Development of weak-textured and high-performance Mg–Zn–Ca alloy sheets based on Zn content optimization, J. Alloys Compd., 849(2020), art. No. 156640. doi: 10.1016/j.jallcom.2020.156640
|
[17] |
W. Rong, Y. Zhang, Y.J. Wu, et al., The role of bimodal-grained structure in strengthening tensile strength and decreasing yield asymmetry of Mg–Gd–Zn–Zr alloys, Mater. Sci. Eng. A, 740-741(2019), p. 262. doi: 10.1016/j.msea.2017.09.125
|
[18] |
L.Y. Jia, W.B. Du, J.L. Fu, et al., Obtaining ultra-high strength and ductility in a Mg–Gd–Er–Zn–Zr alloy via extrusion, pre-deformation and two-stage aging, Acta Metall. Sin. (Engl. Lett.), 34(2021), No. 1, p. 39.
|
[19] |
W. Fu, P.F. Dang, S.W. Guo, et al., Heterogeneous fiberous structured Mg–Zn–Zr alloy with superior strength–ductility synergy, J. Mater. Sci. Technol., 134(2023), p. 67. doi: 10.1016/j.jmst.2022.06.021
|
[20] |
O. Sitdikov, R. Garipova, E. Avtokratova, O. Mukhametdinova, and M. Markushev, Effect of temperature of isothermal multidirectional forging on microstructure development in the Al–Mg alloy with nano-size aluminides of Sc and Zr, J. Alloys Compd., 746(2018), p. 520. doi: 10.1016/j.jallcom.2018.02.277
|
[21] |
S.J. Lee, Y.J. Kim, J.H. Lee, and S.H. Park, Effect of rolling temperature on the microstructural characteristics of high-speed-rolled Mg alloy with initial non-basal texture, Korean J. Met. Mater., 57(2019), No. 8, p. 482. doi: 10.3365/KJMM.2019.57.8.482
|
[22] |
M. Yamasaki and Y. Kawamura, Thermal diffusivity and thermal conductivity of Mg–Zn–rare earth element alloys with long-period stacking ordered phase, Scripta Mater., 60(2009), No. 4, p. 264. doi: 10.1016/j.scriptamat.2008.10.022
|
[23] |
C. Wang, T.J. Luo, Y.T. Liu, T. Lin, and Y.S. Yang, Microstructure and mechanical properties of Mg–5Zn–3.5Sn–1Mn–0.5Ca–0.5Cu alloy, Mater. Charact., 147(2019), p. 406. doi: 10.1016/j.matchar.2018.11.029
|
[24] |
T.S. Zhao, Y.B. Hu, F.S. Pan, et al., Effect of Zn content on the microstructure and mechanical properties of Mg–Al–Sn–Mn alloys, Materials, 12(2019), No. 19, art. No. 3102. doi: 10.3390/ma12193102
|
[25] |
Y.F. Wang, F. Zhang, Y.T. Wang, et al., Effect of Zn content on the microstructure and mechanical properties of Mg–Gd–Y–Zr alloys, Mater. Sci. Eng. A, 745(2019), p. 149. doi: 10.1016/j.msea.2018.12.088
|
[26] |
Y.N. Wang and J.C. Huang, Texture analysis in hexagonal materials, Mater. Chem. Phys., 81(2003), No. 1, p. 11. doi: 10.1016/S0254-0584(03)00168-8
|
[27] |
C.M. Wang, Y.G. Chen, and S.F. Xiao, Situation of research and development of thermal conductive magnesium alloys, Rare Met. Mater. Eng., 44(2015), No. 10, p. 2596.
|
[28] |
L.P. Zhong, J. Peng, M. Li, Y.J. Wang, Y. Lu, and F.S. Pan, Effect of Ce addition on the microstructure, thermal conductivity and mechanical properties of Mg–0.5Mn alloys, J. Alloys Compd., 661(2016), p. 402. doi: 10.1016/j.jallcom.2015.11.107
|
[29] |
L. Zhong, J. Peng, Y. Sun, Y. Wang, Y. Lu, and F. Pan, Microstructure and thermal conductivity of as-cast and as-extruded binary Mg–Mn alloys, Mater. Sci. Technol., 33(2017), No. 1, p. 92. doi: 10.1080/02670836.2016.1161130
|
[30] |
J.T. Hou, W.B. Du, Z.H. Wang, S.B. Li, K. Liu, and X. Du, Combination of enhanced thermal conductivity and strength of MWCNTs reinforced Mg–6Zn matrix composite, J. Alloys Compd., 838(2020), art. No. 155573. doi: 10.1016/j.jallcom.2020.155573
|
[31] |
T. Ying, H. Chi, M.Y. Zheng, Z.T. Li, and C. Uher, Low-temperature electrical resistivity and thermal conductivity of binary magnesium alloys, Acta Mater., 80(2014), p. 288. doi: 10.1016/j.actamat.2014.07.063
|
[32] |
K. Yang, H.C. Pan, S. Du, et al., Low-cost and high-strength Mg–Al–Ca–Zn–Mn wrought alloy with balanced ductility, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1396. doi: 10.1007/s12613-021-2395-y
|