留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 12
Dec.  2023

图(6)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  442
  • HTML全文浏览量:  162
  • PDF下载量:  31
  • 被引次数: 0
Duanhao Cao, Xiaofeng Ma, Yipeng Zhang, La Ta, Yakun Yang, Chao Xu, Feng Ye, and Jianguo Liu, Highly dispersed NiMo@rGO nanocomposite catalysts fabricated by a two-step hydrothermal method for hydrogen evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2432-2440. https://doi.org/10.1007/s12613-023-2677-7
Cite this article as:
Duanhao Cao, Xiaofeng Ma, Yipeng Zhang, La Ta, Yakun Yang, Chao Xu, Feng Ye, and Jianguo Liu, Highly dispersed NiMo@rGO nanocomposite catalysts fabricated by a two-step hydrothermal method for hydrogen evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2432-2440. https://doi.org/10.1007/s12613-023-2677-7
引用本文 PDF XML SpringerLink
研究论文

两步水热法合成高分散性的NiMo@rGO纳米颗粒析氢催化剂



  • 通讯作者:

    徐超    E-mail: mechxu@ncepu.edu.cn

文章亮点

  • (1) 开发出石墨烯负载的高分散NiMo纳米颗粒。
  • (2) 探究了催化剂合成过程中NiMo元素的含量变化规律。
  • (3) 研究了前驱体中NiMo比例对析氢催化剂性能和形貌的影响。
  • 氢能具有能量密度高、无碳无污染等诸多优点,被视为最具前景的清洁能源之一。阴离子交换膜(AEM)电解水制氢结合了碱性电解水的非贵金属催化剂成本低,以及质子交换膜电解水(PEM)结合可再生能源、高纯度的优点,具有良好的应用前景。而设计高性能非贵金属析氢催化剂对于AEM电解水制氢技术的产业化至关重要。石墨烯作为一种二维层状结构材料,具有优异的导电性和比表面积,是可用于析氢催化剂材料的优异载体。本文采用两步水热法在还原氧化石墨烯(rGO)载体上负载了镍钼纳米颗粒,成功制备出NiMo@rGO复合材料。表征结果显示NiMo@rGO具有不规则的层状结构,而NiMo颗粒在rGO上均匀分布。其中性能最好的NiMo@rGO-1在1 M KOH溶液中分别以−10 mA/cm2和−50 mA/cm2电流密度电解,对应析氢过电位仅为93 mV和180 mV。在恒电流电解测试中运行32 h仍保持稳定。催化剂的良好性能可归因于rGO有效阻止了NiMo纳米颗粒的团聚并与NiMo纳米颗粒协同作用。同时该复合材料具有高本征活性、大比表面积以及低电阻的特性。本文为制备高性能低成本的电解水析氢催化剂提供了可靠方案。
  • Research Article

    Highly dispersed NiMo@rGO nanocomposite catalysts fabricated by a two-step hydrothermal method for hydrogen evolution

    + Author Affiliations
    • Exploring and designing a high-performance non-noble metal catalyst for hydrogen evolution reaction (HER) are crucial for the large-scale application of H2 by water electrolysis. Here, novel catalysts with NiMo nanoparticles decorated on reduced graphene oxide (NiMo@rGO) synthesized by a two-step hydrothermal method were reported. Physical characterization results showed that the prepared NiMo@rGO-1 had an irregular lamellar structure, and the NiMo nanoparticles were uniformly dispersed on the rGO. NiMo@rGO-1 exhibited outstanding HER performance in an alkaline environment and required only 93 and 180 mV overpotential for HER in 1.0 M KOH solution to obtain current densities of −10 and −50 mA·cm−2, respectively. Stability tests showed that NiMo@rGO-1 had a certain operating stability for 32 h. Under the same condition, the performance of NiMo@rGO-1 can be comparable with that of commercial Pt/C catalysts at high current density. The synergistic effect between NiMo particles and lamellate graphene can remarkably promote charge transfer in electrocatalytic reactions. As a result, NiMo@rGO-1 presented the advantages of high intrinsic activity, large specific surface area, and small electrical impedance. The lamellar graphene played a role in dispersion to prevent the aggregation of nanoparticles. The prepared NiMo@rGO-1 can be used in anion exchange membrane water electrolysis to produce hydrogen. This study provides a simple preparation method for efficient and low-cost water electrolysis to produce hydrogen in the future.
    • loading
    • Supplementary Information-10.1007s12613-023-2677-7.docx
    • [1]
      B. Zhang, S.X. Zhang, R. Yao, Y.H. Wu, and J.S. Qiu, Progress and prospects of hydrogen production: Opportunities and challenges, J. Electron. Sci. Technol., 19(2021), No. 2, art. No. 100080. doi: 10.1016/j.jnlest.2021.100080
      [2]
      R.L. Germscheidt, D.E.B. Moreira, R.G. Yoshimura, et al., Hydrogen environmental benefits depend on the way of production: An overview of the main processes production and challenges by 2050, Adv. Energy Sustain. Res., 2(2021), No. 10, art. No. 2100093. doi: 10.1002/aesr.202100093
      [3]
      P.J. Megía, A.J. Vizcaíno, J.A. Calles, and A. Carrero, Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review, Energy Fuels, 35(2021), No. 20, p. 16403. doi: 10.1021/acs.energyfuels.1c02501
      [4]
      M.D. Ji and J.L. Wang, Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators, Int. J. Hydrogen Energy, 46(2021), No. 78, p. 38612. doi: 10.1016/j.ijhydene.2021.09.142
      [5]
      S. Shiva Kumar and V. Himabindu, Hydrogen production by PEM water electrolysis - A review, Mater. Sci. Energy Technol., 2(2019), No. 3, p. 442.
      [6]
      K. Ayers, High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes, Curr. Opin. Chem. Eng., 33(2021), art. No. 100719. doi: 10.1016/j.coche.2021.100719
      [7]
      C.Q. Li and J.B. Baek, The promise of hydrogen production from alkaline anion exchange membrane electrolyzers, Nano Energy, 87(2021), art. No. 106162. doi: 10.1016/j.nanoen.2021.106162
      [8]
      H.A. Miller, Green hydrogen from anion exchange membrane water electrolysis, Curr. Opin. Electrochem., 36(2022), art. No. 101122. doi: 10.1016/j.coelec.2022.101122
      [9]
      S.A. Grigoriev, V.N. Fateev, D.G. Bessarabov, and P. Millet, Current status, research trends, and challenges in water electrolysis science and technology, Int. J. Hydrogen Energy, 45(2020), No. 49, p. 26036. doi: 10.1016/j.ijhydene.2020.03.109
      [10]
      S.G. Simoes, J. Catarino, A. Picado, et al., Water availability and water usage solutions for electrolysis in hydrogen production, J. Cleaner Prod., 315(2021), art. No. 128124. doi: 10.1016/j.jclepro.2021.128124
      [11]
      L.F. Liu, Platinum group metal free nano-catalysts for proton exchange membrane water electrolysis, Curr. Opin. Chem. Eng., 34(2021), art. No. 100743. doi: 10.1016/j.coche.2021.100743
      [12]
      L. Sun, Q.M. Luo, Z.F. Dai, and F. Ma, Material libraries for electrocatalytic overall water splitting, Coord. Chem. Rev., 444(2021), art. No. 214049. doi: 10.1016/j.ccr.2021.214049
      [13]
      M. David, C. Ocampo-Martínez, and R. Sánchez-Peña, Advances in alkaline water electrolyzers: A review, J. Energy Storage, 23(2019), p. 392. doi: 10.1016/j.est.2019.03.001
      [14]
      I. Vincent and D. Bessarabov, Low cost hydrogen production by anion exchange membrane electrolysis: A review, Renewable Sustainable Energy Rev., 81(2018), p. 1690. doi: 10.1016/j.rser.2017.05.258
      [15]
      J.C. Yang, M.J. Jang, X.J. Zeng, et al., Non-precious electrocatalysts for oxygen evolution reaction in anion exchange membrane water electrolysis: A mini review, Electrochem. Commun., 131(2021), art. No. 107118. doi: 10.1016/j.elecom.2021.107118
      [16]
      H. Wang, J.K. Xu, J. Xie, C.J. Wang, and P.H. Bai, Hydrogen evolution performance of Ni loading on the carbon-based catalysts, Mater. Chem. Phys., 272(2021), art. No. 125049. doi: 10.1016/j.matchemphys.2021.125049
      [17]
      T.Z. Xiong, B.W. Huang, J.J. Wei, et al., Unveiling the promotion of accelerated water dissociation kinetics on the hydrogen evolution catalysis of NiMoO4 nanorods, J. Energy Chem., 67(2022), p. 805. doi: 10.1016/j.jechem.2021.11.025
      [18]
      T. Wang, X.J. Wang, Y. Liu, J. Zheng, and X.G. Li, A highly efficient and stable biphasic nanocrystalline Ni–Mo–N catalyst for hydrogen evolution in both acidic and alkaline electrolytes, Nano Energy, 22(2016), p. 111. doi: 10.1016/j.nanoen.2016.02.023
      [19]
      J.L. Chang, S.Q. Zang, J.Z. Li, et al., Nitrogen-doped porous carbon encapsulated nickel iron alloy nanoparticles, one-step conversion synthesis for application as bifunctional catalyst for water electrolysis, Electrochim. Acta, 389(2021), art. No. 138785. doi: 10.1016/j.electacta.2021.138785
      [20]
      Z.N. Wang, J. Lu, S. Ji, et al., Integrating Ni nanoparticles into MoN nanosheets form Schottky heterojunctions to boost its electrochemical performance for water electrolysis, J. Alloys Compd., 867(2021), art. No. 158983. doi: 10.1016/j.jallcom.2021.158983
      [21]
      J. Zhang, T. Wang, P. Liu, et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics, Nat. Commun., 8(2017), art. No. 15437. doi: 10.1038/ncomms15437
      [22]
      C. Xu, J.B. Zhou, M. Zeng, X.L. Fu, X.J. Liu, and J.M. Li, Electrodeposition mechanism and characterization of Ni–Mo alloy and its electrocatalytic performance for hydrogen evolution, Int. J. Hydrogen Energy, 41(2016), No. 31, p. 13341. doi: 10.1016/j.ijhydene.2016.06.205
      [23]
      A.G. Vidales and S. Omanovic, Evaluation of nickel-molybdenum-oxides as cathodes for hydrogen evolution by water electrolysis in acidic, alkaline, and neutral media, Electrochim. Acta, 262(2018), p. 115. doi: 10.1016/j.electacta.2018.01.007
      [24]
      L.F. Wang, M.M. Geng, X.N. Ding, et al., Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
      [25]
      L.Y. Wang, L.F. Wang, R. Wang, et al., Solid electrolyte-electrode interface based on buffer therapy in solid-state lithium batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1584. doi: 10.1007/s12613-021-2278-2
      [26]
      X.Y. Zhang, W.L. Yu, J. Zhao, B. Dong, C.G. Liu, and Y.M. Chai, Recent development on self-supported transition metal-based catalysts for water electrolysis at large current density, Appl. Mater. Today, 22(2021), art. No. 100913. doi: 10.1016/j.apmt.2020.100913
      [27]
      A. Faid, A.O. Barnett, F. Seland, and S. Sunde, Highly active nickel-based catalyst for hydrogen evolution in anion exchange membrane electrolysis, Catalysts, 8(2018), No. 12, art. No. 614. doi: 10.3390/catal8120614
      [28]
      X. Chen, C. Shi, and C.H. Liang, Highly selective catalysts for the hydrogenation of alkynols: A review, Chin. J. Catal., 42(2021), No. 12, p. 2105. doi: 10.1016/S1872-2067(20)63773-1
      [29]
      S. Shetty, M.M.J. Sadiq, D.K. Bhat, and A.C. Hegde, Electrodeposition of Ni–Mo–rGO composite electrodes for efficient hydrogen production in an alkaline medium, New J. Chem., 42(2018), No. 6, p. 4661. doi: 10.1039/C7NJ04552B
      [30]
      S. Korkmaz and İ.A. Kariper, Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications, J. Energy Storage, 27(2020), art. No. 101038. doi: 10.1016/j.est.2019.101038
      [31]
      M.T. Safian, K. Umar, and M.N.M. Ibrahim, Synthesis and scalability of graphene and its derivatives: A journey towards sustainable and commercial material, J. Cleaner Prod., 318(2021), art. No. 128603. doi: 10.1016/j.jclepro.2021.128603
      [32]
      D.C. Marcano, D.V. Kosynkin, J.M. Berlin, et al., Improved synthesis of graphene oxide, ACS Nano, 4(2010), No. 8, p. 4806. doi: 10.1021/nn1006368
      [33]
      K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Electric field effect in atomically thin carbon films, Science, 306(2004), No. 5696, p. 666. doi: 10.1126/science.1102896
      [34]
      X.T. Li, X.G. Duan, C. Han, et al., Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting, Carbon, 148(2019), p. 540. doi: 10.1016/j.carbon.2019.04.021
      [35]
      P.P.A. Jose, M.S. Kala, N. Kalarikkal, and S. Thomas, Reduced graphene oxide produced by chemical and hydrothermal methods, Mater. Today Proc., 5(2018), No. 8, p. 16306. doi: 10.1016/j.matpr.2018.05.124
      [36]
      D. Chanda, J. Hnát, A.S. Dobrota, I.A. Pašti, M. Paidar, and K. Bouzek, The effect of surface modification by reduced graphene oxide on the electrocatalytic activity of nickel towards the hydrogen evolution reaction, Phys. Chem. Chem. Phys., 17(2015), No. 40, p. 26864. doi: 10.1039/C5CP04238K
      [37]
      Z.B. Feng, H. Zhang, B. Gao, P. Lu, D.G. Li, and P.F. Xing, Ni–Zn nanosheet anchored on rGO as bifunctional electrocatalyst for efficient alkaline water-to-hydrogen conversion via hydrazine electrolysis, Int. J. Hydrogen Energy, 45(2020), No. 38, p. 19335. doi: 10.1016/j.ijhydene.2020.05.120
      [38]
      S.J. Gutić, A.Z. Jovanović, A.S. Dobrota, et al., Simple routes for the improvement of hydrogen evolution activity of Ni–Mo catalysts: From sol–gel derived powder catalysts to graphene supported co-electrodeposits, Int. J. Hydrogen Energy, 43(2018), No. 35, p. 16846. doi: 10.1016/j.ijhydene.2017.11.131
      [39]
      M. Nemiwal, T.C. Zhang, and D. Kumar, Graphene-based electrocatalysts: Hydrogen evolution reactions and overall water splitting, Int. J. Hydrogen Energy, 46(2021), No. 41, p. 21401. doi: 10.1016/j.ijhydene.2021.04.008
      [40]
      L. Wang, M.Y. Gan, L. Ma, et al., One-step preparation of polyaniline-modified three-dimensional multilayer graphene supported PtFeOx for methanol oxidation, Synth. Met., 287(2022), art. No. 117068. doi: 10.1016/j.synthmet.2022.117068
      [41]
      V.B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj, E.R. Mbuta, and A.U. Khan, Graphene synthesis, characterization and its applications: A review, Results Chem., 3(2021), art. No. 100163. doi: 10.1016/j.rechem.2021.100163
      [42]
      M. Yusuf, M. Kumar, M.A. Khan, M. Sillanpää, and H. Arafat, A review on exfoliation, characterization, environmental and energy applications of graphene and graphene-based composites, Adv. Colloid Interface Sci., 273(2019), art. No. 102036. doi: 10.1016/j.cis.2019.102036
      [43]
      Q. Zhang, P.S. Li, D.J. Zhou, Z. Chang, Y. Kuang, and X.M. Sun, Superaerophobic ultrathin Ni–Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction, Small, 13(2017), No. 41, art. No. 1701648. doi: 10.1002/smll.201701648
      [44]
      C. Ros, S. Murcia-López, X. Garcia, et al., Facing seawater splitting challenges by regeneration with Ni–Mo–Fe bifunctional electrocatalyst for hydrogen and oxygen evolution, ChemSusChem, 14(2021), No. 14, p. 2872. doi: 10.1002/cssc.202100194
      [45]
      J.A. Bau, S.M. Kozlov, L.M. Azofra, et al., Role of oxidized Mo species on the active surface of Ni–Mo electrocatalysts for hydrogen evolution under alkaline conditions, ACS Catal., 10(2020), No. 21, p. 12858. doi: 10.1021/acscatal.0c02743
      [46]
      S.N. Hu, H.M. Wu, C.Q. Feng, and Y. Ding, Synthesis of non-noble NiMoO4-Ni(OH)2/NF bifunctional electrocatalyst and its application in water-urea electrolysis, Int. J. Hydrogen Energy, 45(2020), No. 41, p. 21040. doi: 10.1016/j.ijhydene.2020.05.279
      [47]
      S. Xue, W.M. Zhang, Q. Zhang, J.H. Du, H.M. Cheng, and W.C. Ren, Heterostructured Ni–Mo–N nanoparticles decorated on reduced graphene oxide as efficient and robust electrocatalyst for hydrogen evolution reaction, Carbon, 165(2020), p. 122. doi: 10.1016/j.carbon.2020.04.066
      [48]
      X.Y. Luo, H.M. Xiao, J.Y. Li, et al., Cyclic ether on Pt-based carbon support for enhanced alkaline hydrogen evolution, J. Electroanal. Chem., 939(2023), art. No. 117476. doi: 10.1016/j.jelechem.2023.117476
      [49]
      M.X. Zhao, L.Q. Yang, Z.Y. Cai, H. Guo, and Z.J. Zhao, Design of binder-free hierarchical Mo–Fe–Ni phosphides nanowires array anchored on carbon cloth with high electrocatalytic capability toward hydrogen evolution reaction, J. Alloys Compd., 891(2022), art. No. 162064. doi: 10.1016/j.jallcom.2021.162064
      [50]
      A.M. Venezia, V. La Parola, and L.F. Liotta, Structural and surface properties of heterogeneous catalysts: Nature of the oxide carrier and supported particle size effects, Catal. Today, 285(2017), p. 114. doi: 10.1016/j.cattod.2016.11.004
      [51]
      L.X. Wang, Y. Li, M.R. Xia, et al., Ni nanoparticles supported on graphene layers: An excellent 3D electrode for hydrogen evolution reaction in alkaline solution, J. Power Sources, 347(2017), p. 220. doi: 10.1016/j.jpowsour.2017.02.017
      [52]
      I. Flis-Kabulska and J. Flis, Electrodeposits of nickel with reduced graphene oxide (Ni/rGO) and their enhanced electroactivity towards hydrogen evolution in water electrolysis, Mater. Chem. Phys., 241(2020), art. No. 122316. doi: 10.1016/j.matchemphys.2019.122316

    Catalog


    • /

      返回文章
      返回