留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 12
Dec.  2023

图(11)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  1672
  • HTML全文浏览量:  341
  • PDF下载量:  79
  • 被引次数: 0
Cuiping Li, Gezhong Chen, Zhu’en Ruan, Raimund Bürger, Yuan Gao, Hezi Hou, and Hui Wang, Effect of variations in the polar and azimuthal angles of coarse particles on the structure of drainage channels in thickened beds, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2321-2333. https://doi.org/10.1007/s12613-023-2680-z
Cite this article as:
Cuiping Li, Gezhong Chen, Zhu’en Ruan, Raimund Bürger, Yuan Gao, Hezi Hou, and Hui Wang, Effect of variations in the polar and azimuthal angles of coarse particles on the structure of drainage channels in thickened beds, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2321-2333. https://doi.org/10.1007/s12613-023-2680-z
引用本文 PDF XML SpringerLink
研究论文

粗颗粒极角和方位角的变化对尾砂浓密床层导水通道结构的影响研究



  • 通讯作者:

    阮竹恩    E-mail: ustb_ruanzhuen@hotmail.com

文章亮点

  • (1) 浓密过程中导水通道体积下降且孔喉结构参数是床层排水的关键因素。
  • (2) 研究了床层中粗颗粒的方位角和极角变化对导水通道结构产生的影响。
  • (3) 揭示了床层中粗颗粒的θφ变化对床面排水的作用机理。
  • 本研究对床层中的导水通道和尾砂粗颗粒进行了三维重建和定量表征。分析了粗颗粒方位角(θ)和极角(φ)的变化对导水通道结构的影响,并研究了床层的排水机理。结果表明,床层内水的排出使球状孔隙和棍状孔喉结构的尺寸减小,从而增加了料浆浓度,并且棍状孔喉结构是排水过程的关键组成部分。粗颗粒的 φθ 主要沿粗颗粒的长轴方向变化。φ的变化对床层内导水通道结构产生了累积堵塞效应,增加了排水的难度。耙架和导水杆结构在浓密床层上形成了剪切环,在耙架剪切过程中,粗颗粒的 θ 分布由无序变为有序。在剪切过程中,导水通道结构随着 θ 的变化而受到挤压,从而导致导水通道结构破裂,促进了床层中水的排出,有利于料浆浓度的进一步提高。该成果有望为尾砂浓密过程中高浓度底流的制备提供理论指导。
  • Research Article

    Effect of variations in the polar and azimuthal angles of coarse particles on the structure of drainage channels in thickened beds

    + Author Affiliations
    • The 3D reconstruction and quantitative characterization of drainage channels and coarse tailings particles in a bed were conducted in this study. The influence of variations in the azimuthal angle (θ) and polar angle (φ) of coarse particles on drainage channel structure was analyzed, and the drainage mechanism of the bed was studied. Results showed that water discharge in the bed reduced the size of pores and throat channels, increasing slurry concentration. The throat channel structure was a key component of the drainage process. The φ and θ of particles changed predominantly along the length direction. The changes in φ had a cumulative plugging effect on the drainage channel and increased the difficulty of water discharge. The rake and rod formed a shear ring in the tailings bed with shear, and the θ distribution of particles changed from disorderly to orderly during the rotation process. The drainage channel was squeezed during the shearing process with the change in θ, which broke the channel structure, encouraged water discharge in the bed, and facilitated a further increase in slurry concentration. The findings of this work are expected to offer theoretical guidance for preparing high-concentration underflow in the tailings thickening process.
    • loading
    • Supplementary Information-10.1007s12613-023-2680-z.doc
    • [1]
      S. Spiegel and B. Brown, Heed local impact of coal mining, Nature, 550(2017), No. 7674, art. No. 43.
      [2]
      A.G. Nazareno and J.R.S. Vitule, Too many mining disasters in Brazil, Nature, 531(2016), No. 7596, art. No. 580.
      [3]
      D. Wu, R.K. Zhao, C.W. Xie, and S. Liu, Effect of curing humidity on performance of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1046. doi: 10.1007/s12613-020-1970-y
      [4]
      R. Arjmand, M. Massinaei, and A. Behnamfard, Improving flocculation and dewatering performance of iron tailings thickeners, J. Water Process. Eng., 31(2019), art. No. 100873. doi: 10.1016/j.jwpe.2019.100873
      [5]
      L.H. Yang, H.J. Wang, A.X. Wu, et al., Effect of mixing time on hydration kinetics and mechanical property of cemented paste backfill, Constr. Build. Mater., 247(2020), art. No. 118516. doi: 10.1016/j.conbuildmat.2020.118516
      [6]
      K. Fang and M. Fall, Effects of curing temperature on shear behaviour of cemented paste backfill-rock interface, Int. J. Rock Mech. Min. Sci., 112(2018), p. 184. doi: 10.1016/j.ijrmms.2018.10.024
      [7]
      A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
      [8]
      C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
      [9]
      Q.S. Chen, S.Y. Sun, Y.K. Liu, C.C. Qi, H.B. Zhou, and Q.L. Zhang, Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440. doi: 10.1007/s12613-021-2274-6
      [10]
      Y.Y. Tan, X. Yu, D. Elmo, L.H. Xu, and W.D. Song, Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 404. doi: 10.1007/s12613-019-1749-1
      [11]
      E. Carissimi and J. Rubio, Polymer-bridging flocculation performance using turbulent pipe flow, Miner. Eng., 70(2015), p. 20. doi: 10.1016/j.mineng.2014.08.019
      [12]
      W.P. He, J. Nan, H.Y. Li, and S.N. Li, Characteristic analysis on temporal evolution of floc size and structure in low-shear flow, Water Res., 46(2012), No. 2, p. 509. doi: 10.1016/j.watres.2011.11.040
      [13]
      H.Z. Jiao, W.L. Chen, A.X. Wu, et al., Flocculated unclassified tailings settling efficiency improvement by particle collision optimization in the feedwell, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2126. doi: 10.1007/s12613-021-2402-3
      [14]
      A. Dubey, A.S. Patra, A.N. Sarkar, et al., Synthesis of a copolymeric system and its flocculation performance for iron ore tailings, Miner. Eng., 165(2021), art. No. 106848. doi: 10.1016/j.mineng.2021.106848
      [15]
      Z.E. Ruan, C.P. Li, and C. Shi, Numerical simulation of flocculation and settling behavior of whole-tailings particles in deep-cone thickener, J. Cent. South Univ., 23(2016), No. 3, p. 740. doi: 10.1007/s11771-016-3119-8
      [16]
      D.L. Wang, Q.L. Zhang, Q.S. Chen, C.C. Qi, Y. Feng, and C.C. Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1438. doi: 10.1007/s12613-020-2022-3
      [17]
      A. Pourjavadi, S.M. Fakoorpoor, and S.H. Hosseini, Novel cationic-modified salep as an efficient flocculating agent for settling of cement slurries, Carbohydr. Polym., 93(2013), No. 2, p. 506. doi: 10.1016/j.carbpol.2012.12.049
      [18]
      Z.E. Ruan, A.X. Wu, J.D. Wang, S.H. Yin, and Y. Wang, Flocculation and settling behavior of unclassified tailings based on measurement of floc chord length, Chin. J. Eng., 42(2020), No. 8, p. 980.
      [19]
      S. Sharma, C.L. Lin, and J.D. Miller, Multi-scale features including water content of polymer induced kaolinite floc structures, Miner. Eng., 101(2017), p. 20. doi: 10.1016/j.mineng.2016.11.003
      [20]
      M.R. MacIver, H. Alizadeh, V.K. Kuppusamy, H. Hamza, and M. Pawlik, The macro-structure of quartz flocs, Powder Technol., 395(2022), p. 255. doi: 10.1016/j.powtec.2021.09.052
      [21]
      Z.E. Ruan, A.X. Wu, R. Bürger, et al., Effect of interparticle interactions on the yield stress of thickened flocculated copper mineral tailings slurry, Powder Technol., 392(2021), p. 278. doi: 10.1016/j.powtec.2021.07.008
      [22]
      C.P. Li, G.Z. Chen, Z.E. Ruan, and H.Z. Hou, Dynamic evolution law of floc structure in whole process of tailings thickening, Chin. J. Nonferrous Metal., 33(2023), No. 4, p. 1318.
      [23]
      A.X. Wu, Z.E. Ruan, R. Bürger, S.H. Yin, J.D. Wang, and Y. Wang, Optimization of flocculation and settling parameters of tailings slurry by response surface methodology, Miner. Eng., 156(2020), art. No. 106488. doi: 10.1016/j.mineng.2020.106488
      [24]
      R. Bürger, S. Diehl, S. Farås, I. Nopens, and E. Torfs, A consistent modelling methodology for secondary settling tanks: A reliable numerical method, Water Sci. Technol., 68(2013), No. 1, p. 192. doi: 10.2166/wst.2013.239
      [25]
      R. Bürger, S. Diehl, and I. Nopens, A consistent modelling methodology for secondary settling tanks in wastewater treatment, Water Res., 45(2011), No. 6, p. 2247. doi: 10.1016/j.watres.2011.01.020
      [26]
      R. Bürger, J. Careaga, S. Diehl, and R. Pineda, A moving-boundary model of reactive settling in wastewater treatment. Part 1: Governing equations, Appl. Math. Model., 106(2022), p. 390. doi: 10.1016/j.apm.2022.01.018
      [27]
      J.I. Langlois and A. Cipriano, Dynamic modeling and simulation of tailing thickener units for the development of control strategies, Miner. Eng., 131(2019), p. 131. doi: 10.1016/j.mineng.2018.11.006
      [28]
      L.Y. Zhu, W.S. Lyu, P. Yang, and Z.K. Wang, Effect of ultrasound on the flocculation-sedimentation and thickening of unclassified tailings, Ultrason. Sonochem., 66(2020), art. No. 104984. doi: 10.1016/j.ultsonch.2020.104984
      [29]
      D. Zheng, W.D. Song, Y.Y. Tan, S. Cao, Z.L. Yang, and L.J. Sun, Fractal and microscopic quantitative characterization of unclassified tailings flocs, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1429. doi: 10.1007/s12613-020-2181-2
      [30]
      B. Gladman, R.G. de Kretser, M. Rudman, and P.J. Scales, Effect of shear on particulate suspension dewatering, Chem. Eng. Res. Des., 83(2005), No. 7, p. 933. doi: 10.1205/cherd.04328
      [31]
      M.S. Zbik, R.St.C. Smart, and G.E. Morris, Kaolinite flocculation structure, J. Colloid Interface Sci., 328(2008), No. 1, p. 73. doi: 10.1016/j.jcis.2008.08.063
      [32]
      H.Z. Jiao, S.F. Wang, Y.X. Yang, and X.M. Chen, Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill, J. Clean. Prod., 245(2020), art. No. 118882. doi: 10.1016/j.jclepro.2019.118882
      [33]
      H.Z. Jiao, Y.C. Wu, H. Wang, et al., Micro-scale mechanism of sealed water seepage and thickening from tailings bed in rake shearing thickener, Miner. Eng., 173(2021), art. No. 107043. doi: 10.1016/j.mineng.2021.107043
      [34]
      Z.Y. Feng, X.S. Dong, Y.P. Fan, et al., Use of X-ray microtomography to quantitatively characterize the pore structure of three-dimensional filter cakes, Miner. Eng., 152(2020), art. No. 106275. doi: 10.1016/j.mineng.2020.106275
      [35]
      Z.Y. Feng, Y.P. Fan, X.S. Dong, X.M. Ma, and R.X. Chen, Permeability estimation in filter cake based on X-ray microtomography and Lattice Boltzmann method, Sep. Purif. Technol., 275(2021), art. No. 119114. doi: 10.1016/j.seppur.2021.119114
      [36]
      T. Vrålstad, A. Saasen, E. Fjær, T. Øia, J.D. Ytrehus, and M. Khalifeh, Plug & abandonment of offshore wells: Ensuring long-term well integrity and cost-efficiency, J. Petrol. Sci. Eng., 173(2019), p. 478. doi: 10.1016/j.petrol.2018.10.049
      [37]
      V. Busignies, B. Leclerc, P. Porion, P. Evesque, G. Couarraze, and P. Tchoreloff, Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography, Eur. J. Pharm. Biopharm., 64(2006), No. 1, p. 38. doi: 10.1016/j.ejpb.2006.02.007
      [38]
      X.C. Yuan, L.S. Wu, and Q.J. Peng, An improved Otsu method using the weighted object variance for defect detection, Appl. Surf. Sci., 349(2015), p. 472. doi: 10.1016/j.apsusc.2015.05.033
      [39]
      N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern., 9(1979), No. 1, p. 62. doi: 10.1109/TSMC.1979.4310076
      [40]
      W.N. Yuan and W. Fan, Quantitative study on the microstructure of loess soils at micrometer scale via X-ray computed tomography, Powder Technol., 408(2022), art. No. 117712. doi: 10.1016/j.powtec.2022.117712
      [41]
      D. Ma, H.Y. Duan, J.X. Zhang, X.W. Liu, and Z.H. Li, Numerical simulation of water-silt inrush hazard of fault rock: A three-phase flow model, Rock Mech. Rock Eng., 55(2022), No. 8, p. 5163. doi: 10.1007/s00603-022-02878-9
      [42]
      M.I. Mishchenko, Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation, Appl. Opt., 39(2000), No. 6, p. 1026. doi: 10.1364/AO.39.001026
      [43]
      S. Bhattacharyya, Studies of asymmetric particle production in different multiplicity zones in azimuthal space in high energy nucleus–nucleus interactions, Can. J. Phys., 99(2021), No. 5, p. 340. doi: 10.1139/cjp-2020-0364
      [44]
      D. Ma, H.Y. Duan, J.X. Zhang, and H.B. Bai, A state-of-the-art review on rock seepage mechanism of water inrush disaster in coal mines, Int. J. Coal Sci. Technol., 9(2022), No. 1, p. 1. doi: 10.1007/s40789-022-00477-1
      [45]
      J. Greenwood, The correct and incorrect generation of a cosine distribution of scattered particles for Monte-Carlo modelling of vacuum systems, Vacuum, 67(2002), No. 2, p. 217. doi: 10.1016/S0042-207X(02)00173-2
      [46]
      L.K. Kinsale, M.A. Kazemi, J.A.W. Elliott, and D.S. Nobes, Transportation and deposition of spherical and irregularly shaped particles flowing through a porous network into a narrow slot, Exp. Therm. Fluid Sci., 109(2019), art. No. 109894. doi: 10.1016/j.expthermflusci.2019.109894
      [47]
      T. Börzsönyi, B. Szabó, S. Wegner, et al., Shear-induced alignment and dynamics of elongated granular particles, Phys. Rev. E, 86(2012), No. 5, art. No. 051304. doi: 10.1103/PhysRevE.86.051304
      [48]
      N.W. Mueggenburg, Behavior of granular materials under cyclic shear, Phys. Rev. E, 71(2005), No. 3, art. No. 031301. doi: 10.1103/PhysRevE.71.031301
      [49]
      S. Behr, U. Vainio, M. Müller, A. Schreyer, and G.A. Schneider, Large-scale parallel alignment of platelet-shaped particles through gravitational sedimentation, Sci. Rep., 5(2015), art. No. 9984. doi: 10.1038/srep09984

    Catalog


    • /

      返回文章
      返回