Cite this article as: |
Jingchun Sun, Jindiao Guan, Suqing Zhou, Jiewei Ouyang, Nan Zhou, Chunxia Ding, and Mei’e Zhong, Improving the electrocatalytic activity of Fe, N co-doped biochar for polysulfide by regulation of N–C and Fe–N–C electronic configurations, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2421-2431. https://doi.org/10.1007/s12613-023-2683-9 |
钟美娥 E-mail: zhongmeie@hunau.net
Supplementary Information-10.1007s12613-023-2683-9.docx |
[1] |
S.K. Malyan, S.S. Kumar, R.K. Fagodiya, et al., Biochar for environmental sustainability in the energy-water-agroecosystem nexus, Renewable Sustainable Energy Rev., 149(2021), art. No. 111379. doi: 10.1016/j.rser.2021.111379
|
[2] |
J. Lehmann, A. Cowie, C.A. Masiello, et al., Biochar in climate change mitigation, Nat. Geosci., 14(2021), No. 12, p. 883. doi: 10.1038/s41561-021-00852-8
|
[3] |
R.K. Srivastava, N.P. Shetti, K.R. Reddy, E.E. Kwon, M.N. Nadagouda, and T.M. Aminabhavi, Biomass utilization and production of biofuels from carbon neutral materials, Environ. Pollut., 276(2021), art. No. 116731. doi: 10.1016/j.envpol.2021.116731
|
[4] |
S.X. Wei, Z.C. Li, Y. Sun, J.M. Zhang, Y.Y. Ge, and Z.L. Li, A comprehensive review on biomass humification: Recent advances in pathways, challenges, new applications, and perspectives, Renewable Sustainable Energy Rev., 170(2022), art. No. 112984. doi: 10.1016/j.rser.2022.112984
|
[5] |
M.Y. Gao, Y.C. Xue, Y.T. Zhang, et al., Growing Co–Ni–Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries, Inorg. Chem. Front., 9(2022), No. 15, p. 3933. doi: 10.1039/D2QI00695B
|
[6] |
F. Lü, X.M. Lu, S.S. Li, H.A. Zhang, L.M. Shao, and P.J. He, Dozens-fold improvement of biochar redox properties by KOH activation, Chem. Eng. J., 429(2022), art. No. 132203. doi: 10.1016/j.cej.2021.132203
|
[7] |
S. Bakshi, C. Banik, D.A. Laird, R. Smith, and R.C. Brown, Enhancing biochar as scaffolding for slow release of nitrogen fertilizer, ACS Sustainable Chem. Eng., 9(2021), No. 24, p. 8222. doi: 10.1021/acssuschemeng.1c02267
|
[8] |
F.Z. Qin, C. Zhang, G.M. Zeng, D.L. Huang, X.F. Tan, and A.B. Duan, Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity, Renewable Sustainable Energy Rev., 157(2022), art. No. 112056. doi: 10.1016/j.rser.2021.112056
|
[9] |
C. Nita, B. Zhang, J. Dentzer, and C.M. Ghimbeu, Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries, J. Energy Chem., 58(2021), p. 207. doi: 10.1016/j.jechem.2020.08.065
|
[10] |
B. Yu, A.J. Huang, K. Srinivas, et al., Outstanding catalytic effects of 1T'-MoTe2 quantum dots@3D graphene in shuttle-free Li–S batteries, ACS Nano, 15(2021), No. 8, p. 13279. doi: 10.1021/acsnano.1c03011
|
[11] |
T.Z. Hou, X.A. Chen, H.J. Peng, et al., Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries, Small, 12(2016), No. 24, p. 3283. doi: 10.1002/smll.201600809
|
[12] |
B. Fan, D.K. Zhao, W. Xu, et al., Nitrogen-doped carbonaceous scaffold anchored with cobalt nanoparticles as sulfur host for efficient adsorption and catalytic conversion of polysulfides in lithium–sulfur batteries, Electrochim. Acta, 383(2021), art. No. 138371. doi: 10.1016/j.electacta.2021.138371
|
[13] |
T.Y. Wang, D.W. Su, Y. Chen, et al., Biomimetic 3D Fe/CeO2 decorated N-doped carbon nanotubes architectures for high-performance lithium–sulfur batteries, Chem. Eng. J., 401(2020), art. No. 126079. doi: 10.1016/j.cej.2020.126079
|
[14] |
M. Qiao, C. Tang, G. He, et al., Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: Conductivity versus active sites, J. Mater. Chem. A, 4(2016), No. 32, p. 12658. doi: 10.1039/C6TA04578B
|
[15] |
M.E. Zhong, J.D. Guan, Q.J. Feng, et al., Accelerated polysulfide redox kinetics revealed by ternary sandwich-type S@Co/N-doped carbon nanosheet for high-performance lithium–sulfur batteries, Carbon, 128(2018), p. 86. doi: 10.1016/j.carbon.2017.11.084
|
[16] |
Z.X. Zhao, Z.L. Yi, H.J. Li, et al., Synergetic effect of spatially separated dual co-catalyst for accelerating multiple conversion reaction in advanced lithium sulfur batteries, Nano Energy, 81(2021), art. No. 105621. doi: 10.1016/j.nanoen.2020.105621
|
[17] |
Z.L. Chen, S.P. Cheng, Y.X. Chen, X.H. Xia, and H.B. Liu, Pomegranate-like S@N-doped graphitized carbon spheres as high-performance cathode for lithium–sulfur battery, Mater. Lett., 263(2020), art. No. 127283. doi: 10.1016/j.matlet.2019.127283
|
[18] |
C. Ma, Y.Q. Zhang, Y.M. Feng, et al., Engineering Fe–N coordination structures for fast redox conversion in lithium–sulfur batteries, Adv. Mater., 33(2021), No. 30, art. No. 2100171. doi: 10.1002/adma.202100171
|
[19] |
J. Wang, B. Li, Y. Li, et al., Facile synthesis of atomic Fe–N–C materials and dual roles investigation of Fe–N4 sites in Fenton-like reactions, Adv. Sci., 8(2021), No. 22, art. No. 2101824. doi: 10.1002/advs.202101824
|
[20] |
Q.M. Chen, S.Q. Li, Y. Liu, et al., Size-controllable Fe–N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase, Sens. Actuators B, 305(2020), art. No. 127511. doi: 10.1016/j.snb.2019.127511
|
[21] |
Y. Qiu, L.S. Fan, M.X. Wang, et al., Precise synthesis of Fe–N2 sites with high activity and stability for long-life lithium–sulfur batteries, ACS Nano, 14(2020), No. 11, p. 16105. doi: 10.1021/acsnano.0c08056
|
[22] |
X.L. Wang and L.M. Yang, Efficient modulation of the catalytic performance of electrocatalytic nitrogen reduction with transition metals anchored on N/O-codoped graphene by coordination engineering, J. Mater. Chem. A, 10(2022), No. 3, p. 1481. doi: 10.1039/D1TA08877G
|
[23] |
A.P. Doherty, E. Marley, R. Barhdadi, V. Puchelle, K. Wagner, and G.G. Wallace, Mechanism and kinetics of electrocarboxylation of aromatic ketones in ionic liquid, J. Electroanal. Chem., 819(2018), p. 469. doi: 10.1016/j.jelechem.2017.12.035
|
[24] |
J.A. Rodríguez-Manzo, C. Pham-Huu, and F. Banhart, Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon, ACS Nano, 5(2011), No. 2, p. 1529. doi: 10.1021/nn103456z
|
[25] |
M.J. Liu, J. Lee, T.C. Yang, et al., Synergies of Fe single atoms and clusters on N-doped carbon electrocatalyst for pH-universal oxygen reduction, Small Methods., 5(2021), No. 5, art. No. 2001165. doi: 10.1002/smtd.202001165
|
[26] |
X.M. Guo, S.J. Liu, X.H. Wan, et al., Controllable solid-phase fabrication of an Fe2O3/Fe5C2/Fe–N–C electrocatalyst toward optimizing the oxygen reduction reaction in zinc–air batteries, Nano Lett., 22(2022), No. 12, p. 4879. doi: 10.1021/acs.nanolett.2c01318
|
[27] |
V.L. Pham, D.G. Kim, and S.O. Ko, Catalytic degradation of acetaminophen by Fe and N Co-doped multi-walled carbon nanotubes, Environ. Res., 201(2021), art. No. 111535. doi: 10.1016/j.envres.2021.111535
|
[28] |
G.Q. Cao, Z.K. Wang, D. Bi, J. Zheng, Q.X. Lai, and Y.Y. Liang, Atomic-scale dispersed Fe-based catalysts confined on nitrogen-doped graphene for Li–S batteries: Polysulfides with enhanced conversion efficiency, Chem. Eur. J., 26(2020), No. 45, p. 10314. doi: 10.1002/chem.202001282
|
[29] |
L. Zhang, P. Liang, X.L. Man, et al., N co-doped graphene as a multi-functional anchor material for lithium–sulfur battery, J. Phys. Chem. Solids, 126(2019), p. 280. doi: 10.1016/j.jpcs.2018.11.027
|
[30] |
D.L. Vu, N. Kim, Y. Myung, M. Yang, and J.W. Lee, Aluminum phosphate as a bifunctional additive for improved cycling stability of Li–S batteries, J. Power Sources, 459(2020), art. No. 228068. doi: 10.1016/j.jpowsour.2020.228068
|
[31] |
M.S. Mirhosseyni and F. Nemati, Fe/N co-doped mesoporous carbon derived from cellulose-based ionic liquid as an efficient heterogeneous catalyst toward nitro aromatic compound reduction reaction, Int. J. Biol. Macromol., 175(2021), p. 432. doi: 10.1016/j.ijbiomac.2021.02.009
|
[32] |
P.F. Tian, J.B. Zang, S.W. Song, et al., In situ template reaction method to prepare three-dimensional interconnected Fe–N doped hierarchical porous carbon for efficient oxygen reduction reaction catalysts and high performance supercapacitors, J. Power Sources, 448(2020), art. No. 227443. doi: 10.1016/j.jpowsour.2019.227443
|
[33] |
G. Xia, Z.Q. Zheng, J.J. Ye, X.T. Li, M.J. Biggs, and C. Hu, Carbon microspheres with embedded FeP nanoparticles as a cathode electrocatalyst in Li–S batteries, Chem. Eng. J., 406(2021), art. No. 126823. doi: 10.1016/j.cej.2020.126823
|
[34] |
R.X. Chen, Y.C. Zhou, and X.D. Li, Cotton-derived Fe/Fe3C-encapsulated carbon nanotubes for high-performance lithium–sulfur batteries, Nano Lett., 22(2022), No. 3, p. 1217. doi: 10.1021/acs.nanolett.1c04380
|
[35] |
D.J. Xie, S.L. Mei, Y.L. Xu, et al., Efficient sulfur host based on yolk-shell iron oxide/sulfide-carbon nanospindles for lithium–sulfur batteries, ChemSusChem, 14(2021), No. 5, p. 1404. doi: 10.1002/cssc.202002731
|
[36] |
M. Faheem, X. Yin, R.W. Shao, et al., Efficient polysulfide conversion by Fe–N/C active sites anchored in N, P-doped carbon for high-performance lithium–sulfur batteries, J. Alloys Compd., 922(2022), art. No. 166132. doi: 10.1016/j.jallcom.2022.166132
|
[37] |
L.B. Ni, S.Q. Duan, H.Y. Zhang, et al., A 3D Graphene/WO3 nanowire composite with enhanced capture and polysulfides conversion catalysis for high-performance Li–S batteries, Carbon, 182(2021), p. 335. doi: 10.1016/j.carbon.2021.05.056
|
[38] |
J.R. He, A. Bhargav, and A. Manthiram, Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy-density lithium–sulfur batteries, Adv. Mater., 32(2020), No. 40, art. No. 2004741. doi: 10.1002/adma.202004741
|
[39] |
T. Wang, J.A. Zhu, Z.X. Wei, et al., Bacteria-derived biological carbon building robust Li–S batteries, Nano Lett., 19(2019), No. 7, p. 4384. doi: 10.1021/acs.nanolett.9b00996
|
[40] |
M.E. Zhong, J.C. Sun, X.Q. Shu, et al., N, P, O-codoped biochar from phytoremediation residues: A promising cathode material for Li–S batteries, Nanotechnology, 33(2022), No. 21, art. No. 215403. doi: 10.1088/1361-6528/ac5286
|
[41] |
J.F. Liang, Y.Q. Xu, C. Li, et al., Traditional Chinese medicine residue-derived micropore-rich porous carbon frameworks as efficient sulfur hosts for high-performance lithium–sulfur batteries, Dalton Trans., 51(2022), No. 1, p. 129. doi: 10.1039/D1DT02595C
|
[42] |
R. Nisticò, F. Guerretta, P.L. Benzi, and G. Magnacca, Chitosan-derived biochars obtained at low pyrolysis temperatures for potential application in electrochemical energy storage devices, Int. J. Biol. Macromol., 164(2020), p. 1825. doi: 10.1016/j.ijbiomac.2020.08.017
|
[43] |
M.A. Al-Tahan, Y.T. Dong, R. Zhang, Y.Y. Zhang, and J.M. Zhang, Understanding the high-performance Fe(OH)3@GO nanoarchitecture as effective sulfur hosts for the high capacity of lithium–sulfur batteries, Appl. Surf. Sci., 538(2021), art. No. 148032. doi: 10.1016/j.apsusc.2020.148032
|
[44] |
J.K. Xu, P.F. Zhou, L. Dai, et al., A scalable waste-free biorefinery inspires revenue from holistic lignocellulose valorization, Green Chem., 23(2021), No. 16, p. 6008. doi: 10.1039/D1GC01720A
|
[45] |
J. Park, B.C. Yu, J.S. Park, et al., Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li–S battery, Adv. Energy Mater., 7(2017), No. 11, art. No. 1602567. doi: 10.1002/aenm.201602567
|
[46] |
Z.Y. Han, S.Y. Zhao, J.W. Xiao, et al., Engineering d–p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li–S batteries, Adv. Mater., 33(2021), No. 44, art. No. 2105947. doi: 10.1002/adma.202105947
|
[47] |
B. Guan, Y. Zhang, L.S. Fan, et al., Blocking polysulfide with Co2B@CNT via “synergetic adsorptive effect” toward ultrahigh-rate capability and robust lithium–sulfur battery, ACS Nano, 13(2019), No. 6, p. 6742. doi: 10.1021/acsnano.9b01329
|
[48] |
T.K. Zhao, J.W. Chen, K.Q. Dai, et al., Boosted polysulfides regulation by iron carbide nanoparticles-embedded porous biomass-derived carbon toward superior lithium–sulfur batteries, J. Colloid Interface Sci., 605(2022), p. 129. doi: 10.1016/j.jcis.2021.07.044
|