留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 12
Dec.  2023

图(5)

数据统计

分享

计量
  • 文章访问数:  726
  • HTML全文浏览量:  282
  • PDF下载量:  25
  • 被引次数: 0
Jingchun Sun, Jindiao Guan, Suqing Zhou, Jiewei Ouyang, Nan Zhou, Chunxia Ding,  and Mei’e Zhong, Improving the electrocatalytic activity of Fe, N co-doped biochar for polysulfide by regulation of N–C and Fe–N–C electronic configurations, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2421-2431. https://doi.org/10.1007/s12613-023-2683-9
Cite this article as:
Jingchun Sun, Jindiao Guan, Suqing Zhou, Jiewei Ouyang, Nan Zhou, Chunxia Ding,  and Mei’e Zhong, Improving the electrocatalytic activity of Fe, N co-doped biochar for polysulfide by regulation of N–C and Fe–N–C electronic configurations, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2421-2431. https://doi.org/10.1007/s12613-023-2683-9
引用本文 PDF XML SpringerLink
研究论文

调控N–C和Fe–N–C的电子结构增强Fe, N共掺杂生物炭对多硫化物的电催化活性



  • 通讯作者:

    钟美娥    E-mail: zhongmeie@hunau.net

文章亮点

  • (1) 通过简单的共热解法合成富含N–C和Fe–N–C键的Fe、N共掺杂生物炭(Fe–NOPC)。
  • (2) 调控N–C和Fe–N–C键的电子结构可以增强Fe–NOPC对多硫化物的吸附和催化转化能力。
  • (3) Fe–NOPC材料比表面积为1891.7 m2·g−1,硫负载量高达77wt%。
  • (4) 在电流密度为0.1C,面载量为3.8 mg·cm−2的条件下,Fe–NOPC/S具有4.45 mAh·cm−2的高面积容量。
  • 将农业剩余生物质转化为生物炭作为锂硫电池的硫宿主材料,是缓解温室效应和实现废弃物资源化利用的一种很有前景的方法。在锂硫电池充放电过程中,如何抑制中间产物多硫化物的穿梭效应,加速活性物质硫与多硫化物的相互转化,是开发长寿命、高面积容量锂硫电池的关键问题。然而,原始生物炭的导电性低,电催化位点有限,难以实现大规模应用。本文通过芝麻壳和乙二胺四乙酸铁钠(NaFeEDTA)共热解制备铁氮共掺杂生物炭(Fe–NOPC)来解决这些问题。在合成过程中,利用NaFeEDTA作为额外的碳源来调节氮掺杂的化学环境,从而提高石墨氮、吡咯氮、吡啶氮和Fe–Nx键的含量。当将Fe–NOPC作为硫宿主时,其表面的吡啶氮和吡咯氮会调节生物炭的表面电子结构,加速电子/离子的传递,而正电性的石墨氮可以通过静电作用吸附固定硫相关物种。Fe–Nx键能够与中间产物多硫化锂形成较强的Li–N和S–Fe键,促进多硫化锂的氧化还原反应。利用这些优点,所制的Fe–NOPC /S复合阴极在面载量为3.8 mg·cm−2、电流密度为0.1C时,获得4.45 mAh·cm−2的高面积容量;1C时仍保持为3.45 mAh·cm−2。可见,本文所制Fe–NOPC材料在实现高能量锂硫电池方面具有巨大的潜力。
  • Research Article

    Improving the electrocatalytic activity of Fe, N co-doped biochar for polysulfide by regulation of N–C and Fe–N–C electronic configurations

    + Author Affiliations
    • The conversion of agricultural residual biomass into biochar as a sulfur host material for Li–S batteries is a promising approach to alleviate the greenhouse effect and realize waste resource reutilization. However, the large-scale application of pristine biochar is hindered by its low electrical conductivity and limited electrocatalytic sites. This paper addressed these challenges via the construction of Fe–N co-doped biochar (Fe–NOPC) through the copyrolysis of sesame seeds shell and ferric sodium ethylenediaminetetraacetic acid (NaFeEDTA). During the synthesis process, NaFeEDTA was used as an extra carbon resource to regulate the chemical environment of N doping, which resulted in the production of high contents of graphitic, pyridinic, and pyrrolic N and Fe–Nx bonds. When the resulting Fe–NOPC was used as a sulfur host, the pyridinic and pyrrolic N would adjust the surface electron structure of biochar to accelerate the electron/ion transport, and the electropositive graphitic N could be combined with sulfur-related species via electrostatic attraction. Fe–Nx could also promote the redox reaction of lithium polysulfides due to the strong Li–N and S–Fe bonds. Benefiting from these advantages, the resultant Fe–NOPC/S cathode with a sulfur loading of 3.8 mg·cm−2 delivered an areal capacity of 4.45 mAh·cm−2 at 0.1C and retained a capacity of 3.45 mAh·cm−2 at 1C. Thus, this cathode material holds enormous potential for achieving energy-dense Li–S batteries.
    • loading
    • Supplementary Information-10.1007s12613-023-2683-9.docx
    • [1]
      S.K. Malyan, S.S. Kumar, R.K. Fagodiya, et al., Biochar for environmental sustainability in the energy-water-agroecosystem nexus, Renewable Sustainable Energy Rev., 149(2021), art. No. 111379. doi: 10.1016/j.rser.2021.111379
      [2]
      J. Lehmann, A. Cowie, C.A. Masiello, et al., Biochar in climate change mitigation, Nat. Geosci., 14(2021), No. 12, p. 883. doi: 10.1038/s41561-021-00852-8
      [3]
      R.K. Srivastava, N.P. Shetti, K.R. Reddy, E.E. Kwon, M.N. Nadagouda, and T.M. Aminabhavi, Biomass utilization and production of biofuels from carbon neutral materials, Environ. Pollut., 276(2021), art. No. 116731. doi: 10.1016/j.envpol.2021.116731
      [4]
      S.X. Wei, Z.C. Li, Y. Sun, J.M. Zhang, Y.Y. Ge, and Z.L. Li, A comprehensive review on biomass humification: Recent advances in pathways, challenges, new applications, and perspectives, Renewable Sustainable Energy Rev., 170(2022), art. No. 112984. doi: 10.1016/j.rser.2022.112984
      [5]
      M.Y. Gao, Y.C. Xue, Y.T. Zhang, et al., Growing Co–Ni–Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries, Inorg. Chem. Front., 9(2022), No. 15, p. 3933. doi: 10.1039/D2QI00695B
      [6]
      F. Lü, X.M. Lu, S.S. Li, H.A. Zhang, L.M. Shao, and P.J. He, Dozens-fold improvement of biochar redox properties by KOH activation, Chem. Eng. J., 429(2022), art. No. 132203. doi: 10.1016/j.cej.2021.132203
      [7]
      S. Bakshi, C. Banik, D.A. Laird, R. Smith, and R.C. Brown, Enhancing biochar as scaffolding for slow release of nitrogen fertilizer, ACS Sustainable Chem. Eng., 9(2021), No. 24, p. 8222. doi: 10.1021/acssuschemeng.1c02267
      [8]
      F.Z. Qin, C. Zhang, G.M. Zeng, D.L. Huang, X.F. Tan, and A.B. Duan, Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity, Renewable Sustainable Energy Rev., 157(2022), art. No. 112056. doi: 10.1016/j.rser.2021.112056
      [9]
      C. Nita, B. Zhang, J. Dentzer, and C.M. Ghimbeu, Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries, J. Energy Chem., 58(2021), p. 207. doi: 10.1016/j.jechem.2020.08.065
      [10]
      B. Yu, A.J. Huang, K. Srinivas, et al., Outstanding catalytic effects of 1T'-MoTe2 quantum dots@3D graphene in shuttle-free Li–S batteries, ACS Nano, 15(2021), No. 8, p. 13279. doi: 10.1021/acsnano.1c03011
      [11]
      T.Z. Hou, X.A. Chen, H.J. Peng, et al., Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries, Small, 12(2016), No. 24, p. 3283. doi: 10.1002/smll.201600809
      [12]
      B. Fan, D.K. Zhao, W. Xu, et al., Nitrogen-doped carbonaceous scaffold anchored with cobalt nanoparticles as sulfur host for efficient adsorption and catalytic conversion of polysulfides in lithium–sulfur batteries, Electrochim. Acta, 383(2021), art. No. 138371. doi: 10.1016/j.electacta.2021.138371
      [13]
      T.Y. Wang, D.W. Su, Y. Chen, et al., Biomimetic 3D Fe/CeO2 decorated N-doped carbon nanotubes architectures for high-performance lithium–sulfur batteries, Chem. Eng. J., 401(2020), art. No. 126079. doi: 10.1016/j.cej.2020.126079
      [14]
      M. Qiao, C. Tang, G. He, et al., Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: Conductivity versus active sites, J. Mater. Chem. A, 4(2016), No. 32, p. 12658. doi: 10.1039/C6TA04578B
      [15]
      M.E. Zhong, J.D. Guan, Q.J. Feng, et al., Accelerated polysulfide redox kinetics revealed by ternary sandwich-type S@Co/N-doped carbon nanosheet for high-performance lithium–sulfur batteries, Carbon, 128(2018), p. 86. doi: 10.1016/j.carbon.2017.11.084
      [16]
      Z.X. Zhao, Z.L. Yi, H.J. Li, et al., Synergetic effect of spatially separated dual co-catalyst for accelerating multiple conversion reaction in advanced lithium sulfur batteries, Nano Energy, 81(2021), art. No. 105621. doi: 10.1016/j.nanoen.2020.105621
      [17]
      Z.L. Chen, S.P. Cheng, Y.X. Chen, X.H. Xia, and H.B. Liu, Pomegranate-like S@N-doped graphitized carbon spheres as high-performance cathode for lithium–sulfur battery, Mater. Lett., 263(2020), art. No. 127283. doi: 10.1016/j.matlet.2019.127283
      [18]
      C. Ma, Y.Q. Zhang, Y.M. Feng, et al., Engineering Fe–N coordination structures for fast redox conversion in lithium–sulfur batteries, Adv. Mater., 33(2021), No. 30, art. No. 2100171. doi: 10.1002/adma.202100171
      [19]
      J. Wang, B. Li, Y. Li, et al., Facile synthesis of atomic Fe–N–C materials and dual roles investigation of Fe–N4 sites in Fenton-like reactions, Adv. Sci., 8(2021), No. 22, art. No. 2101824. doi: 10.1002/advs.202101824
      [20]
      Q.M. Chen, S.Q. Li, Y. Liu, et al., Size-controllable Fe–N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase, Sens. Actuators B, 305(2020), art. No. 127511. doi: 10.1016/j.snb.2019.127511
      [21]
      Y. Qiu, L.S. Fan, M.X. Wang, et al., Precise synthesis of Fe–N2 sites with high activity and stability for long-life lithium–sulfur batteries, ACS Nano, 14(2020), No. 11, p. 16105. doi: 10.1021/acsnano.0c08056
      [22]
      X.L. Wang and L.M. Yang, Efficient modulation of the catalytic performance of electrocatalytic nitrogen reduction with transition metals anchored on N/O-codoped graphene by coordination engineering, J. Mater. Chem. A, 10(2022), No. 3, p. 1481. doi: 10.1039/D1TA08877G
      [23]
      A.P. Doherty, E. Marley, R. Barhdadi, V. Puchelle, K. Wagner, and G.G. Wallace, Mechanism and kinetics of electrocarboxylation of aromatic ketones in ionic liquid, J. Electroanal. Chem., 819(2018), p. 469. doi: 10.1016/j.jelechem.2017.12.035
      [24]
      J.A. Rodríguez-Manzo, C. Pham-Huu, and F. Banhart, Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon, ACS Nano, 5(2011), No. 2, p. 1529. doi: 10.1021/nn103456z
      [25]
      M.J. Liu, J. Lee, T.C. Yang, et al., Synergies of Fe single atoms and clusters on N-doped carbon electrocatalyst for pH-universal oxygen reduction, Small Methods., 5(2021), No. 5, art. No. 2001165. doi: 10.1002/smtd.202001165
      [26]
      X.M. Guo, S.J. Liu, X.H. Wan, et al., Controllable solid-phase fabrication of an Fe2O3/Fe5C2/Fe–N–C electrocatalyst toward optimizing the oxygen reduction reaction in zinc–air batteries, Nano Lett., 22(2022), No. 12, p. 4879. doi: 10.1021/acs.nanolett.2c01318
      [27]
      V.L. Pham, D.G. Kim, and S.O. Ko, Catalytic degradation of acetaminophen by Fe and N Co-doped multi-walled carbon nanotubes, Environ. Res., 201(2021), art. No. 111535. doi: 10.1016/j.envres.2021.111535
      [28]
      G.Q. Cao, Z.K. Wang, D. Bi, J. Zheng, Q.X. Lai, and Y.Y. Liang, Atomic-scale dispersed Fe-based catalysts confined on nitrogen-doped graphene for Li–S batteries: Polysulfides with enhanced conversion efficiency, Chem. Eur. J., 26(2020), No. 45, p. 10314. doi: 10.1002/chem.202001282
      [29]
      L. Zhang, P. Liang, X.L. Man, et al., N co-doped graphene as a multi-functional anchor material for lithium–sulfur battery, J. Phys. Chem. Solids, 126(2019), p. 280. doi: 10.1016/j.jpcs.2018.11.027
      [30]
      D.L. Vu, N. Kim, Y. Myung, M. Yang, and J.W. Lee, Aluminum phosphate as a bifunctional additive for improved cycling stability of Li–S batteries, J. Power Sources, 459(2020), art. No. 228068. doi: 10.1016/j.jpowsour.2020.228068
      [31]
      M.S. Mirhosseyni and F. Nemati, Fe/N co-doped mesoporous carbon derived from cellulose-based ionic liquid as an efficient heterogeneous catalyst toward nitro aromatic compound reduction reaction, Int. J. Biol. Macromol., 175(2021), p. 432. doi: 10.1016/j.ijbiomac.2021.02.009
      [32]
      P.F. Tian, J.B. Zang, S.W. Song, et al., In situ template reaction method to prepare three-dimensional interconnected Fe–N doped hierarchical porous carbon for efficient oxygen reduction reaction catalysts and high performance supercapacitors, J. Power Sources, 448(2020), art. No. 227443. doi: 10.1016/j.jpowsour.2019.227443
      [33]
      G. Xia, Z.Q. Zheng, J.J. Ye, X.T. Li, M.J. Biggs, and C. Hu, Carbon microspheres with embedded FeP nanoparticles as a cathode electrocatalyst in Li–S batteries, Chem. Eng. J., 406(2021), art. No. 126823. doi: 10.1016/j.cej.2020.126823
      [34]
      R.X. Chen, Y.C. Zhou, and X.D. Li, Cotton-derived Fe/Fe3C-encapsulated carbon nanotubes for high-performance lithium–sulfur batteries, Nano Lett., 22(2022), No. 3, p. 1217. doi: 10.1021/acs.nanolett.1c04380
      [35]
      D.J. Xie, S.L. Mei, Y.L. Xu, et al., Efficient sulfur host based on yolk-shell iron oxide/sulfide-carbon nanospindles for lithium–sulfur batteries, ChemSusChem, 14(2021), No. 5, p. 1404. doi: 10.1002/cssc.202002731
      [36]
      M. Faheem, X. Yin, R.W. Shao, et al., Efficient polysulfide conversion by Fe–N/C active sites anchored in N, P-doped carbon for high-performance lithium–sulfur batteries, J. Alloys Compd., 922(2022), art. No. 166132. doi: 10.1016/j.jallcom.2022.166132
      [37]
      L.B. Ni, S.Q. Duan, H.Y. Zhang, et al., A 3D Graphene/WO3 nanowire composite with enhanced capture and polysulfides conversion catalysis for high-performance Li–S batteries, Carbon, 182(2021), p. 335. doi: 10.1016/j.carbon.2021.05.056
      [38]
      J.R. He, A. Bhargav, and A. Manthiram, Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy-density lithium–sulfur batteries, Adv. Mater., 32(2020), No. 40, art. No. 2004741. doi: 10.1002/adma.202004741
      [39]
      T. Wang, J.A. Zhu, Z.X. Wei, et al., Bacteria-derived biological carbon building robust Li–S batteries, Nano Lett., 19(2019), No. 7, p. 4384. doi: 10.1021/acs.nanolett.9b00996
      [40]
      M.E. Zhong, J.C. Sun, X.Q. Shu, et al., N, P, O-codoped biochar from phytoremediation residues: A promising cathode material for Li–S batteries, Nanotechnology, 33(2022), No. 21, art. No. 215403. doi: 10.1088/1361-6528/ac5286
      [41]
      J.F. Liang, Y.Q. Xu, C. Li, et al., Traditional Chinese medicine residue-derived micropore-rich porous carbon frameworks as efficient sulfur hosts for high-performance lithium–sulfur batteries, Dalton Trans., 51(2022), No. 1, p. 129. doi: 10.1039/D1DT02595C
      [42]
      R. Nisticò, F. Guerretta, P.L. Benzi, and G. Magnacca, Chitosan-derived biochars obtained at low pyrolysis temperatures for potential application in electrochemical energy storage devices, Int. J. Biol. Macromol., 164(2020), p. 1825. doi: 10.1016/j.ijbiomac.2020.08.017
      [43]
      M.A. Al-Tahan, Y.T. Dong, R. Zhang, Y.Y. Zhang, and J.M. Zhang, Understanding the high-performance Fe(OH)3@GO nanoarchitecture as effective sulfur hosts for the high capacity of lithium–sulfur batteries, Appl. Surf. Sci., 538(2021), art. No. 148032. doi: 10.1016/j.apsusc.2020.148032
      [44]
      J.K. Xu, P.F. Zhou, L. Dai, et al., A scalable waste-free biorefinery inspires revenue from holistic lignocellulose valorization, Green Chem., 23(2021), No. 16, p. 6008. doi: 10.1039/D1GC01720A
      [45]
      J. Park, B.C. Yu, J.S. Park, et al., Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li–S battery, Adv. Energy Mater., 7(2017), No. 11, art. No. 1602567. doi: 10.1002/aenm.201602567
      [46]
      Z.Y. Han, S.Y. Zhao, J.W. Xiao, et al., Engineering d–p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li–S batteries, Adv. Mater., 33(2021), No. 44, art. No. 2105947. doi: 10.1002/adma.202105947
      [47]
      B. Guan, Y. Zhang, L.S. Fan, et al., Blocking polysulfide with Co2B@CNT via “synergetic adsorptive effect” toward ultrahigh-rate capability and robust lithium–sulfur battery, ACS Nano, 13(2019), No. 6, p. 6742. doi: 10.1021/acsnano.9b01329
      [48]
      T.K. Zhao, J.W. Chen, K.Q. Dai, et al., Boosted polysulfides regulation by iron carbide nanoparticles-embedded porous biomass-derived carbon toward superior lithium–sulfur batteries, J. Colloid Interface Sci., 605(2022), p. 129. doi: 10.1016/j.jcis.2021.07.044

    Catalog


    • /

      返回文章
      返回