留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(13)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  730
  • HTML全文浏览量:  258
  • PDF下载量:  87
  • 被引次数: 0
Miao Zhao, Zhendong Li, Jun Wei Chua, Chong Heng Lim, and Xinwei Li, Enhanced energy-absorbing and sound-absorbing capability of functionally graded and helicoidal lattice structures with triply periodic minimal surfaces, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1973-1985. https://doi.org/10.1007/s12613-023-2684-8
Cite this article as:
Miao Zhao, Zhendong Li, Jun Wei Chua, Chong Heng Lim, and Xinwei Li, Enhanced energy-absorbing and sound-absorbing capability of functionally graded and helicoidal lattice structures with triply periodic minimal surfaces, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1973-1985. https://doi.org/10.1007/s12613-023-2684-8
引用本文 PDF XML SpringerLink
研究论文

增强型功能梯度和螺旋三周期极小曲面点阵结构的吸能和吸声性能


  • 通讯作者:

    Li Xinwei    E-mail: xinwei.li@newcastle.ac.uk

文章亮点

  • (1) 提出了功能梯度和螺旋三周期极小曲面点阵结构的设计方法
  • (2) 研究了功能梯度和螺旋设计对点阵结构吸能性能的增强机理
  • (3) 研究了功能梯度和螺旋设计对点阵结构吸声性能的增强机理
  • 点阵结构具有轻质高强的结构性能,同时还兼顾良好的吸能和吸声等功能特性,在工程领域中具有广阔的应用潜力。为了进一步提高点阵结构的吸能和吸声性能,本文基于三周期极小曲面提出了一种功能梯度和螺旋点阵结构的设计方法。在此基础上,采用增材制造技术制备了均匀、螺旋、功能梯度和螺旋与功能梯度结合的四种点阵结构,并系统地研究了点阵结构的变形模式、力学性能、吸能和吸声特性。研究结果表明,螺旋结构减小了点阵单胞内的结构间隙并提高了结构的抗断裂性能,使其承载能力在平台阶段逐渐提高。与均匀结构相比,螺旋结构的平台应力和总能量吸收分别提高了26.9%和21.2%。此外,螺旋结构可降低系统共振频率并提高吸收峰峰值,而功能梯度结构则可以实现吸声系数曲线峰值调控。在1000–6300 Hz的频率范围内,将螺旋与功能梯度结构结合,点阵结构的吸收峰峰值提高了18.6%–30%,吸声系数高于0.6的吸声频带拓宽了55.2%–61.7%。
  • Research Article

    Enhanced energy-absorbing and sound-absorbing capability of functionally graded and helicoidal lattice structures with triply periodic minimal surfaces

    + Author Affiliations
    • Lattice structures have drawn much attention in engineering applications due to their lightweight and multi-functional properties. In this work, a mathematical design approach for functionally graded (FG) and helicoidal lattice structures with triply periodic minimal surfaces is proposed. Four types of lattice structures including uniform, helicoidal, FG, and combined FG and helicoidal are fabricated by the additive manufacturing technology. The deformation behaviors, mechanical properties, energy absorption, and acoustic properties of lattice samples are thoroughly investigated. The load-bearing capability of helicoidal lattice samples is gradually improved in the plateau stage, leading to the plateau stress and total energy absorption improved by over 26.9% and 21.2% compared to the uniform sample, respectively. This phenomenon was attributed to the helicoidal design reduces the gap in unit cells and enhances fracture resistance. For acoustic properties, the design of helicoidal reduces the resonance frequency and improves the peak of absorption coefficient, while the FG design mainly influences the peak of absorption coefficient. Across broad range of frequency from 1000 to 6300 Hz, the maximum value of absorption coefficient is improved by 18.6%–30%, and the number of points higher than 0.6 increased by 55.2%–61.7% by combining the FG and helicoidal designs. This study provides a novel strategy to simultaneously improve energy absorption and sound absorption properties by controlling the internal architecture of lattice structures.
    • loading
    • [1]
      C. Crook, J. Bauer, A. Guell Izard, et al., Plate-nanolattices at the theoretical limit of stiffness and strength, Nat. Commun., 11(2020), No. 1, art. No. 1579. doi: 10.1038/s41467-020-15434-2
      [2]
      E. Cetin and C. Baykasoğlu, Energy absorption of thin-walled tubes enhanced by lattice structures, Int. J. Mech. Sci., 157-158(2019), p. 471. doi: 10.1016/j.ijmecsci.2019.04.049
      [3]
      X.W. Li, X. Yu, and W. Zhai, Less is more: Hollow-truss microlattice metamaterials with dual sound dissipation mechanisms and enhanced broadband sound absorption, Small, 18(2022), No. 44, art. No. e2204145. doi: 10.1002/smll.202204145
      [4]
      T. Zhang, F. Liu, X. Deng, M. Zhao, H.L. Zhou, and D.Z. Zhang, Experimental study on the thermal storage performance of phase change materials embedded with additively manufactured triply periodic minimal surface architected lattices, Int. J. Heat Mass Transf., 199(2022), art. No. 123452. doi: 10.1016/j.ijheatmasstransfer.2022.123452
      [5]
      M. Askari, D.A. Hutchins, P.J. Thomas, et al., Additive manufacturing of metamaterials: A review, Addit. Manuf., 36(2020), art. No. 101562.
      [6]
      V.S. Deshpande, M.F. Ashby, and N.A. Fleck, Foam topology: Bending versus stretching dominated architectures, Acta Mater., 49(2001), No. 6, p. 1035. doi: 10.1016/S1359-6454(00)00379-7
      [7]
      M.F. Ashby, The properties of foams and lattices, Philos. Trans. R. Soc. A, 364(2006), No. 1838, p. 15. doi: 10.1098/rsta.2005.1678
      [8]
      F.N. Habib, P. Iovenitti, S.H. Masood, and M. Nikzad, Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology, Mater. Des., 155(2018), p. 86. doi: 10.1016/j.matdes.2018.05.059
      [9]
      M. Zhao, D.Z. Zhang, Z.H. Li, T. Zhang, H.L. Zhou, and Z.H. Ren, Design, mechanical properties, and optimization of BCC lattice structures with taper struts, Compos. Struct., 295(2022), art. No. 115830. doi: 10.1016/j.compstruct.2022.115830
      [10]
      Y.L. Wei, Q.S. Yang, X. Liu, and R. Tao, Multi-bionic mechanical metamaterials: A composite of FCC lattice and bone structures, Int. J. Mech. Sci., 213(2022), art. No. 106857. doi: 10.1016/j.ijmecsci.2021.106857
      [11]
      D.S.J. Al-Saedi, S.H. Masood, M. Faizan-Ur-Rab, A. Alomarah, and P. Ponnusamy, Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM, Mater. Des., 144(2018), p. 32. doi: 10.1016/j.matdes.2018.01.059
      [12]
      M. Lai, A.N. Kulak, D. Law, Z.B. Zhang, F.C. Meldrum, and D.J. Riley, Profiting from nature: Macroporous copper with superior mechanical properties, Chem. Commun., 2007, No. 34, p. 3547. doi: 10.1039/b707469g
      [13]
      S.H. Siddique, P.J. Hazell, H.X. Wang, J.P. Escobedo, and A.A.H. Ameri, Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption-A review, Addit. Manuf., 58(2022), art. No. 103051.
      [14]
      K. Krishnan, D.W. Lee, M. Al Teneji, and R.K. Abu Al-Rub, Effective stiffness, strength, buckling and anisotropy of foams based on nine unique triple periodic minimal surfaces, Int. J. Solids Struct., 238(2022), art. No. 111418. doi: 10.1016/j.ijsolstr.2021.111418
      [15]
      X. Guo, J.H. Ding, X.W. Li, et al., Enhancement in the mechanical behaviour of a Schwarz Primitive periodic minimal surface lattice structure design, Int. J. Mech. Sci., 216(2022), art. No. 106977. doi: 10.1016/j.ijmecsci.2021.106977
      [16]
      O. Al-Ketan, R. Rowshan, and R.K. Abu Al-Rub, Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials, Addit. Manuf., 19(2018), p. 167.
      [17]
      L. Zhang, B. Song, J.J. Fu, et al., Topology-optimized lattice structures with simultaneously high stiffness and light weight fabricated by selective laser melting: Design, manufacturing and characterization, J. Manuf. Process., 56(2020), p. 1166. doi: 10.1016/j.jmapro.2020.06.005
      [18]
      J.W. Feng, B. Liu, Z.W. Lin, and J.Z. Fu, Isotropic octet-truss lattice structure design and anisotropy control strategies for implant application, Mater. Des., 203(2021), art. No. 109595. doi: 10.1016/j.matdes.2021.109595
      [19]
      J.W. Chua, X.W. Li, X. Yu, and W. Zhai, Novel slow-sound lattice absorbers based on the sonic black hole, Compos. Struct., 304(2023), art. No. 116434. doi: 10.1016/j.compstruct.2022.116434
      [20]
      X.W. Li, X.A. Yu, J.W. Chua, H.P. Lee, J. Ding, and W. Zhai, Microlattice metamaterials with simultaneous superior acoustic and mechanical energy absorption, Small, 17(2021), No. 24, art. No. 2100336. doi: 10.1002/smll.202100336
      [21]
      J. Boulvert, T. Cavalieri, J. Costa-Baptista, et al., Optimally graded porous material for broadband perfect absorption of sound, J. Appl. Phys., 126(2019), No. 17, art. No. 175101. doi: 10.1063/1.5119715
      [22]
      Z.J. Lai, M. Zhao, C.H. Lim, and J.W. Chua, Experimental and numerical studies on the acoustic performance of simple cubic structure lattices fabricated by digital light processing, Mater. Sci. Addit. Manuf., 1(2022), No. 4, p. 22.
      [23]
      Z.D. Li, W. Zhai, X.W. Li, X.A. Yu, Z.C. Guo, and Z.G. Wang, Additively manufactured dual-functional metamaterials with customisable mechanical and sound-absorbing properties, Virtual Phys. Prototyp., 17(2022), No. 4, p. 864. doi: 10.1080/17452759.2022.2085119
      [24]
      Z.D. Li, X.X. Wang, X.W. Li, Z.G. Wang, and W. Zhai, New class of multifunctional bioinspired microlattice with excellent sound absorption, damage tolerance, and high specific strength, ACS Appl. Mater. Interfaces, 15(2023), No. 7, p. 9940. doi: 10.1021/acsami.2c19456
      [25]
      W.J. Yang, J.A. An, C.K. Chua, and K. Zhou, Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography, Virtual Phys. Prototyp., 15(2020), No. 2, p. 242. doi: 10.1080/17452759.2020.1740747
      [26]
      T. Zieliński, N. Dauchez, T. Boutin, et al., Taking advantage of a 3D printing imperfection in the development of sound-absorbing materials, Appl. Acoust., 197(2022), art. No. 108941. doi: 10.1016/j.apacoust.2022.108941
      [27]
      T.G. Zieliński, K.C. Opiela, P. Pawłowski, et al., Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study, Addit. Manuf., 36(2020), art. No. 101564.
      [28]
      X.W. Li, X. Yu, and W. Zhai, Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels, Adv. Mater., 33(2021), No. 44, art. No. e2104552. doi: 10.1002/adma.202104552
      [29]
      X.W. Li, X.A. Yu, M. Zhao, Z.D. Li, Z.G. Wang, and W. Zhai, Multi-level bioinspired microlattice with broadband sound-absorption capabilities and deformation-tolerant compressive response, Adv. Funct. Mater., 33(2023), No. 2, art. No. 2210160. doi: 10.1002/adfm.202210160
      [30]
      Y. Liu, Mechanical properties of a new type of plate-lattice structures, Int. J. Mech. Sci., 192(2021), art. No. 106141. doi: 10.1016/j.ijmecsci.2020.106141
      [31]
      X. Peng, Q.Y. Huang, Y.L. Zhang, et al., Elastic response of anisotropic Gyroid cellular structures under compression: Parametric analysis, Mater. Des., 205(2021), art. No. 109706. doi: 10.1016/j.matdes.2021.109706
      [32]
      X.H. Zhang, Z.G. Qu, and H. Wang, Engineering acoustic metamaterials for sound absorption: From uniform to gradient structures, iScience, 23(2020), No. 5, art. No. 101110. doi: 10.1016/j.isci.2020.101110
      [33]
      M. Zhao, X.W. Li, D.Z. Zhang, and W. Zhai, Design, mechanical properties and optimization of lattice structures with hollow prismatic struts, Int. J. Mech. Sci., 238(2023), art. No. 107842. doi: 10.1016/j.ijmecsci.2022.107842
      [34]
      M. Zhao, D.Z. Zhang, F. Liu, Z.H. Li, Z.B. Ma, and Z.H. Ren, Mechanical and energy absorption characteristics of additively manufactured functionally graded sheet lattice structures with minimal surfaces, Int. J. Mech. Sci., 167(2020), art. No. 105262. doi: 10.1016/j.ijmecsci.2019.105262
      [35]
      J.K. Yang, D. Gu, K.J. Lin, et al., Laser powder bed fusion of mechanically efficient helicoidal structure inspired by mantis shrimp, Int. J. Mech. Sci., 231(2022), art. No. 107573. doi: 10.1016/j.ijmecsci.2022.107573
      [36]
      O. Robin, A. Berry, O. Doutres, and N. Atalla, Measurement of the absorption coefficient of sound absorbing materials under a synthesized diffuse acoustic field, J. Acoust. Soc. Am., 136(2014), No. 1, p. EL13. doi: 10.1121/1.4881321
      [37]
      X.H. Zhang, Z.G. Qu, D. Tian, and Y. Fang, Acoustic characteristics of continuously graded phononic crystals, Appl. Acoust., 151(2019), p. 22. doi: 10.1016/j.apacoust.2019.03.002
      [38]
      A. Lomte, B. Sharma, M. Drouin, and D. Schaffarzick, Sound absorption and transmission loss properties of open-celled aluminum foams with stepwise relative density gradients, Appl. Acoust., 193(2022), art. No. 108780. doi: 10.1016/j.apacoust.2022.108780
      [39]
      K. Huang, D.H. Yang, S.Y. He, and D.P. He, Acoustic absorption properties of open-cell Al alloy foams with graded pore size, J. Phys. D, 44(2011), No. 36, art. No. 365405. doi: 10.1088/0022-3727/44/36/365405
      [40]
      J.W. Chua, X.W. Li, T. Li, B.W. Chua, X. Yu, and W. Zhai, Customisable sound absorption properties of functionally graded metallic foams, J. Mater. Sci. Technol., 108(2022), p. 196. doi: 10.1016/j.jmst.2021.07.056
      [41]
      J.F. Kang, E.C. Dong, D.C. Li, S.P. Dong, C. Zhang, and L. Wang, Anisotropy characteristics of microstructures for bone substitutes and porous implants with application of additive manufacturing in orthopaedic, Mater. Des., 191(2020), art. No. 108608. doi: 10.1016/j.matdes.2020.108608
      [42]
      Y.Z. Nian, S. Wan, P. Zhou, X. Wang, R. Santiago, and M. Li, Energy absorption characteristics of functionally graded polymer-based lattice structures filled aluminum tubes under transverse impact loading, Mater. Des., 209(2021), art. No. 110011. doi: 10.1016/j.matdes.2021.110011
      [43]
      N. Suksangpanya, N.A. Yaraghi, D. Kisailus, and P. Zavattieri, Twisting cracks in Bouligand structures, J. Mech. Behav. Biomed. Mater., 76(2017), p. 38. doi: 10.1016/j.jmbbm.2017.06.010
      [44]
      O. Al-Ketan, D.W. Lee, R. Rowshan, and R.K.A. Al-Rub, Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties, J. Mech. Behav. Biomed. Mater., 102(2020), art. No. 103520. doi: 10.1016/j.jmbbm.2019.103520
      [45]
      M. Zhao, X.W. Li, D.Z. Zhang, and W. Zhai, TPMS-based interpenetrating lattice structures: Design, mechanical properties and multiscale optimization, Int. J. Mech. Sci., 244(2023), art. No. 108092. doi: 10.1016/j.ijmecsci.2022.108092
      [46]
      N. Qiu, J.Z. Zhang, F.Q. Yuan, Z.Y. Jin, Y.M. Zhang, and J.G. Fang, Mechanical performance of triply periodic minimal surface structures with a novel hybrid gradient fabricated by selective laser melting, Eng. Struct., 263(2022), art. No. 114377. doi: 10.1016/j.engstruct.2022.114377
      [47]
      F. Liu, T.Y. Zhou, T. Zhang, H.Q. Xie, Y.C. Tang, and P. Zhang, Shell offset enhances mechanical and energy absorption properties of SLM-made lattices with controllable separated voids, Mater. Des., 217(2022), art. No. 110630. doi: 10.1016/j.matdes.2022.110630
      [48]
      M. Zhao, F. Liu, G.A. Fu, D. Zhang, T. Zhang, and H.L. Zhou, Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM, Materials, 11(2018), No. 12, art. No. 2411. doi: 10.3390/ma11122411
      [49]
      N. Yang, Y.L. Tian, and D.W. Zhang, Novel real function based method to construct heterogeneous porous scaffolds and additive manufacturing for use in medical engineering, Med. Eng. Phys., 37(2015), No. 11, p. 1037. doi: 10.1016/j.medengphy.2015.08.006
      [50]
      S.Y. Choy, C.N. Sun, K.F. Leong, and J. Wei, Compressive properties of functionally graded lattice structures manufactured by selective laser melting, Mater. Des., 131(2017), p. 112. doi: 10.1016/j.matdes.2017.06.006
      [51]
      I. Maskery, N.T. Aboulkhair, A.O. Aremu, et al., A mechanical property evaluation of graded density Al–Si10–Mg lattice structures manufactured by selective laser melting, Mater. Sci. Eng. A, 670(2016), p. 264. doi: 10.1016/j.msea.2016.06.013
      [52]
      L. Yang, R. Mertens, M. Ferrucci, C.Z. Yan, Y.S. Shi, and S.F. Yang, Continuous graded Gyroid cellular structures fabricated by selective laser melting: Design, manufacturing and mechanical properties, Mater. Des., 162(2019), p. 394. doi: 10.1016/j.matdes.2018.12.007
      [53]
      M. Zhao, B. Ji, D.Z. Zhang, H. Li, and H.L. Zhou, Design and mechanical performances of a novel functionally graded sheet-based lattice structure, Addit. Manuf., 52(2022), art. No. 102676.
      [54]
      L.J. Gibson and M.F. Ashby, Cellular Solids, Cambridge University Press, Cambridge, 1997.
      [55]
      L. Bai, Y. Xu, X.H. Chen, et al., Improved mechanical properties and energy absorption of Ti6Al4V laser powder bed fusion lattice structures using curving lattice struts, Mater. Des., 211(2021), art. No. 110140. doi: 10.1016/j.matdes.2021.110140
      [56]
      D. Li, W. Liao, N. Dai, and Y.M. Xie, Comparison of mechanical properties and energy absorption of sheet-based and strut-based gyroid cellular structures with graded densities, Materials, 12(2019), No. 13, art. No. 2183. doi: 10.3390/ma12132183
      [57]
      C.Z. Yan, L. Hao, A. Hussein, P. Young, and D. Raymont, Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, Mater. Des., 55(2014), p. 533. doi: 10.1016/j.matdes.2013.10.027
      [58]
      I. Maskery, A. Hussey, A. Panesar, et al., An investigation into reinforced and functionally graded lattice structures, J. Cell. Plast., 53(2017), No. 2, p. 151. doi: 10.1177/0021955X16639035

    Catalog


    • /

      返回文章
      返回