留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(8)

数据统计

分享

计量
  • 文章访问数:  354
  • HTML全文浏览量:  121
  • PDF下载量:  26
  • 被引次数: 0
Jinshan Wang, Feng Li, Si Zhao, Lituo Zheng, Yiyin Huang, and Zhensheng Hong, Uniform nanoplating of metallic magnesium film on titanium dioxide nanotubes as a skeleton for reversible Na metal anode, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1868-1877. https://doi.org/10.1007/s12613-023-2685-7
Cite this article as:
Jinshan Wang, Feng Li, Si Zhao, Lituo Zheng, Yiyin Huang, and Zhensheng Hong, Uniform nanoplating of metallic magnesium film on titanium dioxide nanotubes as a skeleton for reversible Na metal anode, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1868-1877. https://doi.org/10.1007/s12613-023-2685-7
引用本文 PDF XML SpringerLink
研究论文

金属镁纳米薄膜电镀修饰的二氧化钛纳米管及其作为可逆钠金属负极沉积骨架研究



  • 通讯作者:

    郑力拓    E-mail: zhenglituo@fjnu.edu.cn

    洪振生    E-mail: zshong@fjnu.edu.cn

文章亮点

  • (1) 采用低温熔盐电沉积法制备出镁金属纳米薄膜电镀修饰的二氧化钛纳米管阵列;
  • (2) 三维STNA-Mg骨架在钠金属负极沉积中具有超高的库伦效率和极小的过电势;
  • (3) 基于三维STNA-Mg-Na金属负极在全电池中展现出优异的循环性能。
  • 为了实现低成本的钠金属负极,这篇文章报道一种利用离子液体作为电解液的脉冲电沉积技术,在间隙型二氧化钛纳米管阵列上进行均匀的约20 nm厚的纳米电镀镁金属薄膜。镁金属镀膜具有良好亲钠特性和低成本优势,可以有效地降低钠金属的成核能。在Na||Na对称电池中,三维结构的间隙二氧化钛纳米管能有效限制钠沉积与溶解过程中的体积变化,实现超稳定的金属可逆沉积/溶解和高达99.5%的库伦效率,以及仅为5 mV的电压极化。另外,对同样式样方法制得的镀铜样品进行对比研究表明,镁金属确实能够引导钠金属的均匀沉积并抑制枝晶生长。最后,将镀镁的间隙二氧化钛沉积金属钠负极后与商业的磷酸钒钠正极组装成全电池,可得到放电容量110.2 mAh⋅g−1的全电池,并在1C的倍率下循环110圈后仍有95.6%的容量保持率。本研究为低成本的镁金属纳米电镀和高性能的钠金属负极开发提供了切实可行的方法和科研依据。
  • Research Article

    Uniform nanoplating of metallic magnesium film on titanium dioxide nanotubes as a skeleton for reversible Na metal anode

    + Author Affiliations
    • To meet the low-cost concept advocated by the sodium metal anode, this paper reports the use of a pulsed electrodeposition technology with ionic liquids as electrolytes to achieve uniform nanoplating of metallic magnesium films at around 20 nm on spaced titanium dioxide (TiO2) nanotubes (STNA-Mg). First, the sodiophilic magnesium metal coating can effectively reduce the nucleation overpotential of sodium metal. Moreover, three-dimensional STNA can limit the volume expansion during sodium metal plating and stripping to achieve the ultrastable deposition and stripping of sodium metals with a high Coulombic efficiency of up to 99.5% and a small voltage polarization of 5 mV in symmetric Na||Na batteries. In addition, the comparative study of sodium metal deposition behavior of STNA-Mg and STNA-Cu prepared by the same route further confirmed the advantage of magnesium metal to guide sodium metal growth. Finally, the prepared STNA-Mg–Na metal anode and commercial sodium vanadium phosphate cathode were assembled into a full cell, delivering a discharge capacity of 110.2 mAh·g−1 with a retention rate of 95.6% after 110 cycles at 1C rate.
    • loading
    • Supplementary Information-10.1007s12613-023-2685-7.doc
    • [1]
      T.F. Liu, X.K. Yang, J.W. Nai, et al., Recent development of Na metal anodes: Interphase engineering chemistries determine the electrochemical performance, Chem. Eng. J., 409(2021), art. No. 127943. doi: 10.1016/j.cej.2020.127943
      [2]
      B. Sun, P. Xiong, U. Maitra, et al., Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries, Adv. Mater., 32(2020), No. 18, art. No. 1903891. doi: 10.1002/adma.201903891
      [3]
      C. Delmas, Sodium and sodium-ion batteries: 50 years of research, Adv. Energy Mater., 8(2018), No. 17, art. No. 1703137. doi: 10.1002/aenm.201703137
      [4]
      Z.Y. Feng, W.J. Peng, Z.X. Wang, et al., Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1549. doi: 10.1007/s12613-021-2335-x
      [5]
      L.F. Wang, J.Y. Wang, L.Y. Wang, M.J. Zhang, R. Wang, and C. Zhan, A critical review on nickel-based cathodes in rechargeable batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 925. doi: 10.1007/s12613-022-2446-z
      [6]
      B. Lee, E. Paek, D. Mitlin, and S.W. Lee, Sodium metal anodes: Emerging solutions to dendrite growth, Chem. Rev., 119(2019), No. 8, p. 5416. doi: 10.1021/acs.chemrev.8b00642
      [7]
      Y. Zhao, K.R. Adair, and X.L. Sun, Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries, Energy Environ. Sci., 11(2018), No. 10, p. 2673. doi: 10.1039/C8EE01373J
      [8]
      L.L. Fan and X.F. Li, Recent advances in effective protection of sodium metal anode, Nano Energy, 53(2018), p. 630. doi: 10.1016/j.nanoen.2018.09.017
      [9]
      Z.P. Li, K.J. Zhu, P. Liu, and L.F. Jiao, 3D confinement strategy for dendrite-free sodium metal batteries, Adv. Energy Mater., 12(2022), No. 4, art. No. 2100359. doi: 10.1002/aenm.202100359
      [10]
      W. Liu, P.C. Liu, and D. Mitlin, Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes, Adv. Energy Mater., 10(2020), No. 43, art. No. 2002297. doi: 10.1002/aenm.202002297
      [11]
      F. Jin, B. Wang, J.L. Wang, et al., Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries, Matter, 4(2021), No. 6, p. 1768. doi: 10.1016/j.matt.2021.03.004
      [12]
      H. Kim, M.K. Sadan, C. Kim, et al., Enhanced reversible capacity of sulfurized polyacrylonitrile cathode for room-temperature Na/S batteries by electrochemical activation, Chem. Eng. J., 426(2021), art. No. 130787. doi: 10.1016/j.cej.2021.130787
      [13]
      X.T. Lin, Y.P. Sun, Q. Sun, et al., Reviving anode protection layer in Na–O2 batteries: Failure mechanism and resolving strategy, Adv. Energy Mater., 11(2021), No. 11, art. No. 2003789. doi: 10.1002/aenm.202003789
      [14]
      J.F. Xie, Z. Zhou, and Y.B. Wang, Metal–CO2 batteries at the crossroad to practical energy storage and CO2 recycle, Adv. Funct. Mater., 30(2020), No. 9, art. No. 1908285. doi: 10.1002/adfm.201908285
      [15]
      Q.Y. Guo and Z.J. Zheng, Rational design of binders for stable Li–S and Na–S batteries, Adv. Funct. Mater., 30(2020), No. 6, art. No. 1907931. doi: 10.1002/adfm.201907931
      [16]
      X.J. Lai, Z.M. Xu, X.F. Yang, et al., Long cycle life and high-rate sodium metal batteries enabled by regulating 3D frameworks with artificial solid-state interphases, Adv. Energy Mater., 12(2022), No. 10, art. No. 2103540. doi: 10.1002/aenm.202103540
      [17]
      H. Wang, C.L. Wang, E. Matios, and W.Y. Li, Critical role of ultrathin graphene films with tunable thickness in enabling highly stable sodium metal anodes, Nano Lett., 17(2017), No. 11, p. 6808. doi: 10.1021/acs.nanolett.7b03071
      [18]
      X.Y. Zheng, C. Bommier, W. Luo, L.H. Jiang, Y.N. Hao, and Y.H. Huang, Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions, Energy Storage Mater., 16(2019), p. 6. doi: 10.1016/j.ensm.2018.04.014
      [19]
      Z.X. Wang, Z.X. Huang, H. Wang, et al., 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity, ACS Nano, 16(2022), No. 6, p. 9105. doi: 10.1021/acsnano.2c01186
      [20]
      X.M. Xia, X. Lv, Y. Yao, et al., A sodiophilic VN interlayer stabilizing a Na metal anode, Nanoscale Horiz., 7(2022), No. 8, p. 899. doi: 10.1039/D2NH00152G
      [21]
      J.L. Liang, W.W. Wu, L. Xu, and X.H. Wu, Highly stable Na metal anode enabled by a multifunctional hard carbon skeleton, Carbon, 176(2021), p. 219. doi: 10.1016/j.carbon.2021.01.144
      [22]
      Z.W. Sun, Y.D. Ye, J.W. Zhu, et al., Regulating sodium deposition through gradiently-graphitized framework for dendrite-free Na metal anode, Small, 18(2022), No. 18, art. No. 2107199. doi: 10.1002/smll.202107199
      [23]
      K. Yan, Z.D. Lu, H.W. Lee, et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1(2016), art. No. 16010. doi: 10.1038/nenergy.2016.10
      [24]
      S.A. Ferdousi, L.A. O’Dell, J. Sun, Y. Hora, M. Forsyth, and P.C. Howlett, High-performance cycling of Na metal anodes in phosphonium and pyrrolidinium fluoro(sulfonyl)imide based ionic liquid electrolytes, ACS Appl. Mater. Interfaces, 14(2022), No. 13, p. 15784. doi: 10.1021/acsami.1c24812
      [25]
      C.L. Wei, L.W. Tan, Y.C. Zhang, Z.R. Wang, J.K. Feng, and Y.T. Qian, Towards better Mg metal anodes in rechargeable Mg batteries: Challenges, strategies, and perspectives, Energy Storage Mater., 52(2022), p. 299. doi: 10.1016/j.ensm.2022.08.014
      [26]
      L.F. Zhao, Z. Hu, Z.Y. Huang, et al., In situ plating of Mg sodiophilic seeds and evolving sodium fluoride protective layers for superior sodium metal anodes, Adv. Energy Mater., 12(2022), No. 32, art. No. 2200990. doi: 10.1002/aenm.202200990
      [27]
      N. Shahverdi, A. Montazeri, A. Khavandi, H.R. Rezaei, and F. Saeedi, Fabrication of nanohydroxyapatite-chitosan coatings by pulse electrodeposition method, J. Inorg. Organomet. Polym. Mater., 32(2022), No. 12, p. 4649. doi: 10.1007/s10904-022-02468-w
      [28]
      B.S. Pan, Y.J. Yao, L. Peng, Q.X. Zhang, and Y. Yang, Ultrasound-assisted pulse electrodeposition of cobalt films, Mater. Chem. Phys., 241(2020), art. No. 122395. doi: 10.1016/j.matchemphys.2019.122395
      [29]
      T.A. Green, X. Su, and S. Roy, Pulse electrodeposition of copper in the presence of a corrosion reaction, J. Electrochem. Soc., 168(2021), No. 6, art. No. 062515. doi: 10.1149/1945-7111/ac0a21
      [30]
      B.Q. Cheng, X.J. Zhao, Y. Zhang, H.W. Chen, I. Polmear, and J.F. Nie, Co-segregation of Mg and Zn atoms at the planar η1-precipitate/Al matrix interface in an aged Al–Zn–Mg alloy, Scripta. Mater., 185(2020), p. 51. doi: 10.1016/j.scriptamat.2020.04.004
      [31]
      R. Davidson, A. Verma, D. Santos, et al., Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities, Mater. Horiz., 7(2020), No. 3, p. 843. doi: 10.1039/C9MH01367A
      [32]
      S. Tang, Y.Y. Zhang, X.G. Zhang, et al., Stable Na plating and stripping electrochemistry promoted by in situ construction of an alloy-based sodiophilic interphase, Adv. Mater., 31(2019), No. 16, art. No. 1807495. doi: 10.1002/adma.201807495
      [33]
      J.D. Wan, R. Wang, Z.X. Liu, et al., A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries, ACS Nano, 17(2023), No. 2, p. 1610. doi: 10.1021/acsnano.2c11357
      [34]
      Y. Li, M.H. Chen, B. Liu, Y. Zhang, X.Q. Liang, and X.H. Xia, Heteroatom doping: An effective way to boost sodium ion storage, Adv. Energy Mater., 10(2020), No. 27, art. No. 2000927. doi: 10.1002/aenm.202000927

    Catalog


    • /

      返回文章
      返回