留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 1
Jan.  2024

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  299
  • HTML全文浏览量:  96
  • PDF下载量:  24
  • 被引次数: 0
Ruofeng Wang, Peng Gao, Shuai Yuan, Yanjun Li, Yingzhi Liu, and Cheng Huang, Precise regulation of the phase transformation for pyrolusite during the reduction roasting process, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 81-90. https://doi.org/10.1007/s12613-023-2688-4
Cite this article as:
Ruofeng Wang, Peng Gao, Shuai Yuan, Yanjun Li, Yingzhi Liu, and Cheng Huang, Precise regulation of the phase transformation for pyrolusite during the reduction roasting process, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 81-90. https://doi.org/10.1007/s12613-023-2688-4
引用本文 PDF XML SpringerLink
研究论文

软锰矿还原焙烧过程中物相转化精准调控


  • 通讯作者:

    高鹏    E-mail: gaopeng@mail.neu.edu.cn

文章亮点

  • (1) 提出了软锰矿矿物物相精准转化新技术;
  • (2) 探明了软锰矿物相及微观结构演化规律;
  • (3) 阐明了软锰矿还原反应历程及反应机理。
  • 为实现低品位复杂锰矿资源高效利用,本文提出了矿物物相精准转化新技术,通过矿物物相精准转化技术将软锰矿转化高活性方锰矿,并系统研究了矿相转化过程中矿物物相转变机理。软锰矿在焙烧时间25 min、焙烧温度700°C、CO浓度20at%、总气量500 mL·min−1条件下,可获得二价锰占有率95.30%的焙烧产品,焙烧产品中的锰矿物主要以方锰矿的形式存在。利用扫描电镜和BET比表面积测试法研究了焙烧产品的微观结构演变规律,查明了软锰矿的还原从颗粒表面到内核逐步进行反应历程;采用热力学计算、X射线光电子能谱和X射线衍射分析,明确了软锰矿焙烧过程中的元素价态变化及矿物物相转变历程。
  • Research Article

    Precise regulation of the phase transformation for pyrolusite during the reduction roasting process

    + Author Affiliations
    • The mechanism involved in the phase transformation process of pyrolusite (MnO2) during roasting in a reducing atmosphere was systematically elucidated in this study, with the aim of effectively using low-grade complex manganese ore resources. According to single-factor experiment results, the roasted product with a divalent manganese (Mn2+) distribution rate of 95.30% was obtained at a roasting time of 25 min, a roasting temperature of 700°C, a CO concentration of 20at%, and a total gas volume of 500 mL·min−1, in which the manganese was mainly in the form of manganosite (MnO). Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core. Thermodynamic calculations, X-ray photoelectron spectroscopy, and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO2→Mn2O3→Mn3O4→MnO phase by phase, and the reduction of manganese oxides in each valence state proceeded simultaneously.
    • loading
    • [1]
      A. Kozłowska, M. Morawiec, R.H. Petrov, and A. Grajcar, Microstructure evolution of medium-manganese Al-alloyed steel manufactured by double-step intercritical annealing: Effects of heating and cooling rates, Mater. Charact., 199(2023), art. No. 112816. doi: 10.1016/j.matchar.2023.112816
      [2]
      W. Bleck, New insights into the properties of high-manganese steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 782. doi: 10.1007/s12613-020-2166-1
      [3]
      M. Sabzi, S.M. Far, and S.M. Dezfuli, Effect of melting temperature on microstructural evolutions, behavior and corrosion morphology of Hadfield austenitic manganese steel in the casting process, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1431. doi: 10.1007/s12613-018-1697-1
      [4]
      Y.H. Liu, Y.D. Ma, W.T. Yang, S.J. Bao, H. Chen, and M.W. Xu, Spontaneously dissolved MnO: A better cathode material for rechargeable aqueous zinc-manganese batteries, Chem. Eng. J., 473(2023), art. No. 145490. doi: 10.1016/j.cej.2023.145490
      [5]
      Y.Y. Zhang, X.H. Chen, and H.Y. Tan, Effect of ultrasonic treatment on the morphology and corrosion resistance of zinc-manganese phosphate coatings on 16Mn steel in 3.5 % sodium chloride, Int. J. Electrochem. Sci., 18(2023), No. 9, art. No. 100274. doi: 10.1016/j.ijoes.2023.100274
      [6]
      N.H. Lee, P.W. Kao, T.Y. Tseng, and J.R. Su, Effect of manganese addition on the tensile properties of cold-rolled and recovery-annealed aluminum alloy sheets, Mater. Sci. Eng. A, 535(2012), p. 297. doi: 10.1016/j.msea.2011.12.089
      [7]
      N. Katayama and Y. Obora, Recent developments in alkene hydrosilylation utilizing manganese catalysts, Tetrahedron Lett., 132(2023), art. No. 154798. doi: 10.1016/j.tetlet.2023.154798
      [8]
      A.K. Sehgal, C. Juneja, J. Singh, and S. Kalsi, Comparative analysis and review of materials properties used in aerospace Industries: An overview, Mater. Today Proc., 48(2022), p. 1609. doi: 10.1016/j.matpr.2021.09.498
      [9]
      M.G. Lei, B.Z. Ma, D.Y. Lv, C.Y. Wang, E. Asselin, and Y.Q. Chen, A process for beneficiation of low-grade manganese ore and synchronous preparation of calcium sulfate whiskers during hydrochloric acid regeneration, Hydrometallurgy, 199(2021), art. No. 105533. doi: 10.1016/j.hydromet.2020.105533
      [10]
      B.B. Liu, Y.B. Zhang, M.M. Lu, Z.J. Su, G.H. Li, and T. Jiang, Extraction and separation of manganese and iron from ferruginous manganese ores: A review, Miner. Eng., 131(2019), p. 286. doi: 10.1016/j.mineng.2018.11.016
      [11]
      A.P. Das, L.B. Sukla, N. Pradhan, and S. Nayak, Manganese biomining: A review, Bioresour. Technol., 102(2011), No. 16, p. 7381. doi: 10.1016/j.biortech.2011.05.018
      [12]
      S.P. Yang, J.H. Li, W.B. Gao, and H.J. Liu, Optimization of manganese-rich slag extraction from low-manganese ore smelting by response surface methodology, J. Iron Steel Res. Int., 29(2022), No. 10, p. 1573. doi: 10.1007/s42243-022-00781-9
      [13]
      H.M. Baioumy, M.Z. Khedr, and A.H. Ahmed, Mineralogy, geochemistry and origin of Mn in the high-Mn iron ores, Bahariya Oasis, Egypt, Ore Geol. Rev., 53(2013), p. 63. doi: 10.1016/j.oregeorev.2012.12.009
      [14]
      V. Singh, T. Chakraborty, and S.K. Tripathy, A review of low grade manganese ore upgradation processes, Miner. Process. Extr. Metall. Rev., 41(2020), No. 6, p. 417. doi: 10.1080/08827508.2019.1634567
      [15]
      L.H. Gao, Z.G. Liu, M.S. Chu, R. Wang, Z.H. Wang, and C. Feng, Upgrading of low-grade manganese ore based on reduction roasting and magnetic separation technique, Sep. Sci. Technol., 54(2019), No. 1, p. 195. doi: 10.1080/01496395.2018.1504795
      [16]
      S.F. Xiong, X. Li, P.L. Liu, et al., Recovery of manganese from low-grade pyrolusite ore by reductively acid leaching process using lignin as a low cost reductant, Miner. Eng., 125(2018), p. 126. doi: 10.1016/j.mineng.2018.06.003
      [17]
      W.S. Zhang and C.Y. Cheng, Manganese metallurgy review. Part I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide, Hydrometallurgy, 89(2007), No. 3-4, p. 137. doi: 10.1016/j.hydromet.2007.08.010
      [18]
      J.R. Ju, Y.L. Feng, H.R. Li, H. Yu, H. Wu, and S.L. Liu, The limiting effect of manganese phase of oceanic cobalt-rich crust reduction by sawdust in acid leaching, Sustainable Chem. Pharm., 19(2021), art. No. 100346. doi: 10.1016/j.scp.2020.100346
      [19]
      F. Pagnanelli, M. Garavini, F. Vegliò, and L. Toro, Preliminary screening of purification processes of liquor leach solutions obtained from reductive leaching of low-grade manganese ores, Hydrometallurgy, 71(2004), No. 3-4, p. 319. doi: 10.1016/S0304-386X(02)00156-1
      [20]
      G. Chen, Y.Q. Ling, Q.N. Li, et al., Investigation on microwave carbothermal reduction behavior of low-grade pyrolusite, J. Mater. Res. Technol., 9(2020), No. 4, p. 7862. doi: 10.1016/j.jmrt.2020.05.097
      [21]
      S. Ali, Y. Iqbal, I. Khan, et al., Hydrometallurgical leaching and kinetic modeling of low-grade manganese ore with banana peel in sulfuric acid, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 193. doi: 10.1007/s12613-020-2069-1
      [22]
      N.J. Welham, Activation of the carbothermic reduction of manganese ore, Int. J. Miner. Process., 67(2002), No. 1-4, p. 187. doi: 10.1016/S0301-7516(02)00045-5
      [23]
      L.Z. Granina, V.D. Mats, and M.A. Phedorin, Iron-manganese formations in the Baikal region, Russ. Geol. Geophys., 51(2010), No. 6, p. 650. doi: 10.1016/j.rgg.2010.05.006
      [24]
      J. Wen, H.Y. Sun, T. Jiang, B.J. Chen, F.F. Li, and M.X. Liu, Comparison of the interface reaction behaviors of CaO–V2O5 and MnO2–V2O5 solid-state systems based on the diffusion couple method, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 834. doi: 10.1007/s12613-022-2564-7
      [25]
      D.L. Fan and P.J. Yang, Introduction to and classification of manganese deposits of China, Ore Geol. Rev., 15(1999), No. 1-3, p. 1. doi: 10.1016/S0169-1368(99)00011-6
      [26]
      A.A. Nayl, I.M. Ismail, and H.F. Aly, Recovery of pure MnSO4∙H2O by reductive leaching of manganese from pyrolusite ore by sulfuric acid and hydrogen peroxide, Int. J. Miner. Process., 100(2011), No. 3-4, p. 116. doi: 10.1016/j.minpro.2011.05.003
      [27]
      M.K. Sinha and W. Purcell, Reducing agents in the leaching of manganese ores: A comprehensive review, Hydrometallurgy, 187(2019), p. 168. doi: 10.1016/j.hydromet.2019.05.021
      [28]
      P. Perreault, and G.S. Patience, Pyrolusite–CO reduction kinetics, Chem. Eng. J., 295(2016), p. 227. doi: 10.1016/j.cej.2016.03.039
      [29]
      H.H.A. El-Gawad, M.M. Ahmed, N.A. El-Hussiny, and M.E.H. Shalabi, Reduction of low grade Egyptian manganese ore via hydrogen at 800°C–950°C, Open Access Lib. J, 1(2014), No. 4, p. 1.
      [30]
      J. Zhan, Z.J. Wang, C.F. Zhang, J.Y. Hwang, and C.P. Xia, Separation and extraction of bismuth and manganese from roasted low-grade bismuthinite and pyrolusite: Thermodynamic analysis and sulfur fixing, JOM, 67(2015), No. 5, p. 1114. doi: 10.1007/s11837-015-1391-y
      [31]
      X.K. Tian, X.X. Wen, C. Yang, Y.J. Liang, Z.B. Pi, and Y.X. Wang, Reductive leaching of manganese from low-grade manganese dioxide ores using corncob as reductant in sulfuric acid solution, Hydrometallurgy, 100(2010), No. 3-4, p. 157. doi: 10.1016/j.hydromet.2009.11.008
      [32]
      L.B. Wang, Y.M. Xu, H. Tian, and Y.G. Du, Co-treatment of chromite ore processing residue and pyrolusite for simultaneous detoxification and resource utilization, J. Environ. Chem. Eng., 11(2023), No. 3, art. No. 109785. doi: 10.1016/j.jece.2023.109785
      [33]
      F. Teng, S.H. Luo, W.N. Mu, et al., Manganese extraction from low-grade pyrolusite by roasting with H2SO4, JOM, 70(2018), No. 10, p. 2008. doi: 10.1007/s11837-018-3031-9
      [34]
      J.R. Ju, Y.L. Feng, H.R. Li, and X.F. Zhong, Efficient extraction of manganese from low-grade pyrolusite by a sawdust pyrolysis reduction roasting–acid leaching process, JOM, 74(2022), No. 5, p. 1978. doi: 10.1007/s11837-022-05215-1
      [35]
      K.D. Yang, X.J. Ye, J. Su, et al., Response surface optimization of process parameters for reduction roasting of low-grade pyrolusite by bagasse, Trans. Nonferrous Met. Soc. China, 23(2013), No. 2, p. 548. doi: 10.1016/S1003-6326(13)62498-X
      [36]
      S. Yaman, Pyrolysis of biomass to produce fuels and chemical feedstocks, Energy Convers. Manag., 45(2004), No. 5, p. 651. doi: 10.1016/S0196-8904(03)00177-8
      [37]
      H.Q. Zhang, P.F. Zhang, F. Zhou, and M.M. Lu, Application of multi-stage dynamic magnetizing roasting technology on the utilization of cryptocrystalline oolitic hematite: A review, Int. J. Min. Sci. Technol., 32(2022), No. 4, p. 865. doi: 10.1016/j.ijmst.2022.05.001
      [38]
      Z.D. Tang, P.Y. Li, P. Gao, Y.J. Li, and Y.X. Han, Minerals phase transformation by hydrogen reduction technology: A new approach to recycle iron from refractory limonite for reducing carbon emissions, Adv. Powder Technol., 33(2022), No. 12, art. No. 103870. doi: 10.1016/j.apt.2022.103870
      [39]
      X. Zhang, L. Zhao, W.X. Zhou, X.W. Liu, Z.Y. Hu, and K. Wang, Variations in the multilevel structure, gelatinization and digestibility of litchi seed starches from different varieties, Foods, 11(2022), No. 18, art. No. 2821. doi: 10.3390/foods11182821
      [40]
      X.L. Zhang, Y.X. Han, Y.J. Li, W.B. Li, J.C. He, and J.P. Jin, Strengthening the flotation recovery of silver using a special ceramic-medium stirred mill, Powder Technol., 406(2022), art. No. 117585. doi: 10.1016/j.powtec.2022.117585
      [41]
      E. Epifano and D. Monceau, Ellingham diagram: A new look at an old tool, Corros. Sci., 217(2023), art. No. 111113. doi: 10.1016/j.corsci.2023.111113
      [42]
      P.C. Hayes and P. Grieveson, The effects of nucleation and growth on the reduction of Fe2O3 to Fe3O4, Metall. Trans. B, 12(1981), No. 2, p. 319. doi: 10.1007/BF02654465
      [43]
      M. Et-Tabirou, B. Dupré, and C. Gleitzer, Hematite single crystal reduction into magnetite with CO–CO2, Metall. Trans. B, 19(1988), No. 2, p. 311. doi: 10.1007/BF02654216
      [44]
      S. Yuan, R.F. Wang, Q. Zhang, Y.J. Li, and P. Gao, Extraction and phase transformation of iron in fine-grained complex hematite ore by suspension magnetizing roasting and magnetic separation, Korean J. Chem. Eng., 39(2022), No. 7, p. 1891. doi: 10.1007/s11814-022-1116-1
      [45]
      H.Y. Yang, X.B. Tang, X.S. Luo, G.B. Li, H. Liang, and S. Snyder, Oxidants-assisted sand filter to enhance the simultaneous removals of manganese, iron and ammonia from groundwater: Formation of active MnOx and involved mechanisms, J. Hazard. Mater., 415(2021), art. No. 125707. doi: 10.1016/j.jhazmat.2021.125707
      [46]
      E.S. Ilton, J.E. Post, P.J. Heaney, F.T. Ling, and S.N. Kerisit, XPS determination of Mn oxidation states in Mn (hydr)oxides, Appl. Surf. Sci., 366(2016), p. 475. doi: 10.1016/j.apsusc.2015.12.159
      [47]
      K.Q. Li, Q. Jiang, G. Chen, et al., Kinetics characteristics and microwave reduction behavior of walnut shell-pyrolusite blends, Bioresour. Technol., 319(2021), art. No. 124172. doi: 10.1016/j.biortech.2020.124172
      [48]
      Q. Zhang, Y.S. Sun, S. Wang, Y.X. Han, W.B. Li, and Y.J. Li, Whether magnetization roasting requires complete phase reconstruction of iron minerals: A study of phase transition and microstructure evolution, Powder Technol., 411(2022), art. No. 117934. doi: 10.1016/j.powtec.2022.117934

    Catalog


    • /

      返回文章
      返回