留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 1
Jan.  2024

图(11)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  500
  • HTML全文浏览量:  256
  • PDF下载量:  40
  • 被引次数: 0
Bo Wang, Jiawei Li, Zhihui Xie, Gengjie Wang, and Gang Yu, High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 155-164. https://doi.org/10.1007/s12613-023-2689-3
Cite this article as:
Bo Wang, Jiawei Li, Zhihui Xie, Gengjie Wang, and Gang Yu, High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 155-164. https://doi.org/10.1007/s12613-023-2689-3
引用本文 PDF XML SpringerLink
研究论文

航空铝合金高耐蚀耐磨化学镀Ni–P梯度镀层


  • 通讯作者:

    谢治辉    E-mail: zhxie@cwnu.edu.cn

    余刚    E-mail: yuganghnu@163.com

文章亮点

  • (1)系统的研究了二次浸锌的温度和时间对锌层表面形貌的影响。
  • (2)设计了不同含量,不同厚度的Ni–P组合梯度镀层。
  • (3)系统的研究了组合梯度镀层的耐磨性和耐蚀性。
  • 铝合金具有极其优秀的物理性能,故而广泛应用在航空、汽车、电子等高端领域。但在严酷的航空环境中,由于铝的化学性质活泼,极其容易形成氧化膜,这层薄的氧化膜耐腐蚀性能差,同时其自身还存在硬度低和耐磨性差等缺点。为了克服铝合金性能方面的缺点,本文在航空铝合金表面制备了由不同磷含量的Ni–P化学镀层组成的Ni–P合金梯度镀层。采用多种表征和电化学方法对不同Ni–P镀层的形貌、相结构、元素组成和耐蚀性进行了表征。梯度涂层具有良好的附着力和耐腐蚀磨损性能,使铝合金能够在恶劣环境中应用。结果表明,二次浸锌对获得良好的结合力(81.2 N)至关重要。即使在弯曲试验(角度大于90°)后,最佳涂层也不会剥落和碎裂,并且在35°C下进行500 h中性盐雾试验后,目测未见腐蚀。高耐蚀性归因于三种不同镍合金层中这些微缺陷的错位和外层高P含量的非晶态结构。这些研究结果为探索满足复杂恶劣航空环境下铝合金零件高应用要求的功能梯度涂层提供了依据。
  • Research Article

    High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts

    + Author Affiliations
    • A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90° and was not corroded visually after 500 h of neutral salt spray test at 35°C. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments.
    • loading
    • [1]
      S. Basak, P. Biswas, S. Patra, H. Roy, and M.K. Mondal, Effect of TiB2 and Al3Ti on the microstructure, mechanical properties and fracture behaviour of near eutectic Al–12.6Si alloy, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1174. doi: 10.1007/s12613-020-2070-8
      [2]
      Y. Jafari-Tarzanagh, D. Seifzadeh, A. Khodayari, and R. Samadianfard, Active corrosion protection of AA2024 aluminum alloy by sol–gel coating containing inhibitor-loaded mesoporous SBA-15, Prog. Org. Coat., 173(2022), art. No. 107166. doi: 10.1016/j.porgcoat.2022.107166
      [3]
      Y.J. Tarzanagh, D. Seifzadeh, Z. Rajabalizadeh, A. Habibi-Yangjeh, A. Khodayari, and S. Sohrabnezhad, Sol–gel/MOF nanocomposite for effective protection of 2024 aluminum alloy against corrosion, Surf. Coat. Technol., 380(2019), art. No. 125038. doi: 10.1016/j.surfcoat.2019.125038
      [4]
      S. Yadav, S.P. Tewari, J.K. Singh, and S.C. Ram, Effects of mechanical vibration on the physical, metallurgical and mechanical properties of cast A308 (LM21) aluminum alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1206. doi: 10.1007/s12613-020-2209-7
      [5]
      Z. Shao, L. Cui, L.J. Yang, et al., Microstructure and mechanical properties of friction pull plug welding for 2219-T87 aluminum alloy with tungsten inert gas weld, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1216. doi: 10.1007/s12613-020-2222-x
      [6]
      C. Duraipandi, A. Khan M, J.J.T. Winowlin, N.M. Ghazaly, and P.M. Mashinini, Solid particle erosion studies of thermally deposited alumina–titania coatings on an aluminum alloy, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1186. doi: 10.1007/s12613-020-2099-8
      [7]
      H. Ebrahimzadeh, H. Farhangi, S.A.A.A. Mousavi, and A. Ghahramani, Microstructural analyses of aluminum–magnesium–silicon alloys welded by pulsed Nd:YAG laser welding, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 660. doi: 10.1007/s12613-020-2027-y
      [8]
      A.G.G. Gutiérrez, M.A. Pech-Canul, and P.J. Sebastian, Zincating effect on corrosion resistance of electroless Ni–P coating on aluminum alloy 6061, Fuel Cells, 17(2017), No. 6, p. 770. doi: 10.1002/fuce.201600212
      [9]
      S. Nezamdoust and D. Seifzadeh, rGO@APTES/hybrid sol–gel nanocomposite for corrosion protection of 2024 aluminum alloy, Prog. Org. Coat., 109(2017), p. 97. doi: 10.1016/j.porgcoat.2017.04.022
      [10]
      I. Fatima, O. Fayyaz, M.M. Yusuf, A. Al Ashraf, and R.A. Shakoor, Enhanced electrochemical and mechanical performance of BN reinforced Ni–P based nanocomposite coatings, Diam. Relat. Mater., 130(2022), art. No. 109454. doi: 10.1016/j.diamond.2022.109454
      [11]
      M.H. Sliem, O. Fayyaz, R.A. Shakoor, et al., The influence of different preparation methods on the erosion behavior of NiP–ZrO2 nanocomposite coating, Tribol. Int., 178(2023), art. No. 108014. doi: 10.1016/j.triboint.2022.108014
      [12]
      C.O. Osifuye, A.P.I. Popoola, C.A. Loto, and D.T. Oloruntoba, Effect of bath parameters on electroless Ni–P and Zn–P deposition on 1045 steel substrate, Int. J. Electrochem. Sci., 9(2014), No. 11, p. 6074. doi: 10.1016/S1452-3981(23)10871-6
      [13]
      Z.H. Xie, D. Li, Z. Skeete, A. Sharma, and C.J. Zhong, Nanocontainer-enhanced self-healing for corrosion-resistant Ni coating on Mg alloy, ACS Appl. Mater. Interfaces, 9(2017), No. 41, p. 36247. doi: 10.1021/acsami.7b12036
      [14]
      Y.Q. Li, Y.J. Ouyang, R. Fang, et al., A nickel-underlayer/LDH-midlayer/siloxane-toplayer composite coating for inhibiting galvanic corrosion between Ni layer and Mg alloy, Chem. Eng. J., 430(2022), art. No. 132776. doi: 10.1016/j.cej.2021.132776
      [15]
      Z.W. Song, Z.H. Xie, L.F. Ding, Y.J. Zhang, and X.Y. Hu, Preparation of corrosion-resistant MgAl-LDH/Ni composite coating on Mg alloy AZ31B, Colloids Surf. A, 632(2022), art. No. 127699. doi: 10.1016/j.colsurfa.2021.127699
      [16]
      M. Kocabaş, C. Örnek, M. Curioni, and N. Cansever, Nickel fluoride as a surface activation agent for electroless nickel coating of anodized AA1050 aluminum alloy, Surf. Coat. Technol., 364(2019), p. 231. doi: 10.1016/j.surfcoat.2019.03.003
      [17]
      F. Delaunois, J.P. Petitjean, P. Lienard, and M. Jacob-Duliere, Autocatalytic electroless nickel–boron plating on light alloys, Surf. Coat. Technol., 124(2000), No. 2-3, p. 201. doi: 10.1016/S0257-8972(99)00621-0
      [18]
      X.C. Wei, J.B. Wang, X.M. Zhang, and X.G. Wang, Study on the development of pretreatment processes of electroless nickel plating on Al alloy surface, Mater. Sci. Forum, 809-810(2014), p. 412. doi: 10.4028/www.scientific.net/MSF.809-810.412
      [19]
      S. Wernick, R. Pinner, and P.G. Sheasby, The Surface Treatment and Finishing of Aluminum and Its Alloys, 6th ed., ASM International Materials Park, OH, 2001.
      [20]
      C.H. Zhang, X.M. Huang, N. Sheng, and L.L. Gao, A zinc dipping technique for Mg–16Li–5Al–0.5RE alloy at room temperature, Mater. Corros., 64(2013), No. 6, p. 509. doi: 10.1002/maco.201206535
      [21]
      I.S. Othman, M.J. Starink, and S.C. Wang, Impact of single and double zincating treatment on adhesion of electrodeposited nickel coating on aluminium alloy 7075, J. Adv. Manuf. Technol., 12(2018), p. 179.
      [22]
      D.D.N. Singh and R. Ghosh, Electroless nickel–phosphorus coatings to protect steel reinforcement bars from chloride induced corrosion, Surf. Coat. Technol., 201(2006), No. 1-2, p. 90. doi: 10.1016/j.surfcoat.2005.10.045
      [23]
      J.D. Lin and C.T. Chou, The influence of phosphorus content on the microstructure and specific capacitance of etched electroless Ni–P coatings, Surf. Coat. Technol., 368(2019), p. 126. doi: 10.1016/j.surfcoat.2019.04.009
      [24]
      Y.F. Li, K. Zhang, M.M. Zhang, T.T. Wu, P. Cao, and W. Gao, Preparation of electroless Ni–P alloy coating with medium temperature and low phosphorus content, Int. J. Mod. Phys. B, 34(2020), art. No. 2040044. doi: 10.1142/S0217979220400445
      [25]
      E. Georgiza, J. Novakovic, and P. Vassiliou, Characterization and corrosion resistance of duplex electroless Ni–P composite coatings on magnesium alloy, Surf. Coat. Technol., 232(2013), p. 432. doi: 10.1016/j.surfcoat.2013.05.047
      [26]
      A. Hadipour, M. Rahsepar, and H. Hayatdavoudi, Fabrication and characterisation of functionally graded Ni–P coatings with improved wear and corrosion resistance, Surf. Eng., 35(2019), No. 10, p. 883. doi: 10.1080/02670844.2018.1539295
      [27]
      F.L. Zheng, H.S. Chen, Y.Q. Zhang, W.X. Wang, and H.H. Nie, Microstructure evolution and corrosion resistance of AZ31 magnesium alloy tube by stagger spinning, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1361. doi: 10.1007/s12613-021-2396-x
      [28]
      L.D. Ma, G. Lü, and X.L. Shen, An investigation of chemically deposited Ni–P alloys by EXAFS and XRD, Chin. J. Chem., 8(1990), No. 3, p. 239. doi: 10.1002/cjoc.19900080308
      [29]
      M. Rahsepar, F. Mohebbi, and H. Hayatdavoudi, Synthesis and characterization of inhibitor-loaded silica nanospheres for active corrosion protection of carbon steel substrate, J. Alloys Compd., 709(2017), p. 519. doi: 10.1016/j.jallcom.2017.03.104
      [30]
      H. Hayatdavoudi and M. Rahsepar, A mechanistic study of the enhanced cathodic protection performance of graphene-reinforced zinc rich nanocomposite coating for corrosion protection of carbon steel substrate, J. Alloys Compd., 727(2017), p. 1148. doi: 10.1016/j.jallcom.2017.08.250
      [31]
      H. Hayatdavoudi and M. Rahsepar, Smart inhibition action of layered double hydroxide nanocontainers in zinc-rich epoxy coating for active corrosion protection of carbon steel substrate, J. Alloys Compd., 711(2017), p. 560. doi: 10.1016/j.jallcom.2017.04.044
      [32]
      H. Luo, M. Leitch, Y. Behnamian, Y.S. Ma, H.B. Zeng, and J.L. Luo, Development of electroless Ni–P/nano-WC composite coatings and investigation on its properties, Surf. Coat. Technol., 277(2015), p. 99. doi: 10.1016/j.surfcoat.2015.07.011
      [33]
      E.M. Fayyad, A.M. Abdullah, M.K. Hassan, A.M. Mohamed, G. Jarjoura, and Z. Farhat, Recent advances in electroless-plated Ni–P and its composites for erosion and corrosion applications: A review, Emergent Mater., 1(2018), No. 1, p. 3.
      [34]
      U. Ma and D.T. Gawne, Wear of electroless nickel–phosphorus coatings, Trans. IMF, 63(1985), No. 1, p. 64. doi: 10.1080/00202967.1985.11870709

    Catalog


    • /

      返回文章
      返回