留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  931
  • HTML全文浏览量:  322
  • PDF下载量:  73
  • 被引次数: 0
Xiaohang Ma, Zhijie Chen, Tianwen Zhang, Xueqian Zhang, Yuan Ma, Yanqing Guo, Yiyong Wei, Mengyuan Ge, Zhiguo Hou,  and Zhenfa Zi, Efficient utilization of glass fiber separator for low-cost sodium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1878-1886. https://doi.org/10.1007/s12613-023-2691-9
Cite this article as:
Xiaohang Ma, Zhijie Chen, Tianwen Zhang, Xueqian Zhang, Yuan Ma, Yanqing Guo, Yiyong Wei, Mengyuan Ge, Zhiguo Hou,  and Zhenfa Zi, Efficient utilization of glass fiber separator for low-cost sodium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1878-1886. https://doi.org/10.1007/s12613-023-2691-9
引用本文 PDF XML SpringerLink
研究论文

低成本钠离子电池玻璃纤维隔膜的高效利用



  • 通讯作者:

    訾振发    E-mail: zfzi@issp.ac.cn

文章亮点

  • (1) 提出了利用低成本、高韧性的滤纸复合改性高成本、低强度的玻璃纤维的设计思路。
  • (2) 开发了一种简单的流浆过筛工艺用以制备新型复合隔膜。
  • (3) 系统研究了滤纸与玻璃纤维不同复合比例对制备隔膜性能的影响。
  • 隔膜是钠离子电池的关键组成部分,其性能极大影响着钠离子电池的电化学性能和安全特性。常规使用的玻璃纤维滤纸因高成本和差的机械性能而不能满足钠离子电池大规模应用的要求。本文以玻璃纤维隔膜边角料和普通定性滤纸为原料,通过简单的流浆过筛工艺制备出了一系列新型复合隔膜。当玻璃纤维与滤纸复合质量比例为1:1时,复合隔膜获得了优异的综合性能,其拉伸强度达到15.8 MPa,孔隙率为74.3%,离子电导率为1.57 × 10−3 S·cm−1,并且该隔膜可在210°C保持良好的尺寸稳定性。组装的钠离子电池同样显示出了良好的循环性能(1C下500次循环后容量保持率为94.1%)和倍率性能(10C下放电比容量保持率为87.3%),并与电极保持了良好的界面稳定性。以上结果为高性能、低成本钠离子电池的隔膜设计提供了一些新思路。
  • Research Article

    Efficient utilization of glass fiber separator for low-cost sodium-ion batteries

    + Author Affiliations
    • The separator is a key component of sodium-ion battery, which greatly affects the electrochemical performances and safety characteristics of the battery. Conventional glass fiber separator cannot meet the requirements of large-scale application because of high cost and poor mechanical properties. Herein, the novel composite separators are prepared by a simple slurry sieving process using glass fiber separator scraps and ordinary qualitative filter paper as raw materials. As the composite mass ratio is 1:1, the composite separator has excellent comprehensive properties, including tensile strength of 15.8 MPa, porosity of 74.3%, ionic conductivity of 1.57 × 10−3 S·cm−1 and thermal stability at 210°C. The assembled sodium-ion battery shows superior cycling performance (capacity retention of 94.1% after 500 cycles at 1C) and rate capacity (retention rate of 87.3% at 10C), and it maintains fine interface stability. The above results provide some new ideas for the separator design of high-performance and low-cost sodium-ion batteries.
    • loading
    • Supplementary Information-10.1007s12613-023-2691-9.doc
    • [1]
      C. Yang, S. Xin, L.Q. Mai, and Y. You, Materials design for high-safety sodium-ion battery, Adv. Energy Mater., 11(2021), No. 2, art. No. 2000974. doi: 10.1002/aenm.202000974
      [2]
      K.M. Abraham, How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett., 5(2020), No. 11, p. 3544. doi: 10.1021/acsenergylett.0c02181
      [3]
      C.L. Zhao, Q.D. Wang, Z.P. Yao, et al., Rational design of layered oxide materials for sodium-ion batteries, Science, 370(2020), No. 6517, p. 708. doi: 10.1126/science.aay9972
      [4]
      L. Xue, X.Q. Shi, B.W. Lin, Q.B. Guo, Y. Zhao, and H. Xia, Self-standing P2/P3 heterostructured Na0.7CoO2 nanosheet arrays as 3D cathodes for flexible sodium-ion batteries, J. Power Sources, 457(2020), art. No. 228059. doi: 10.1016/j.jpowsour.2020.228059
      [5]
      X. Zhou, A.L. Zhao, Z.X. Chen, and Y.L. Cao, Research progress of tunnel-structural Na0.44MnO2 cathode for sodium-ion batteries: A mini review, Electrochem. Commun., 122(2021), art. No. 106897. doi: 10.1016/j.elecom.2020.106897
      [6]
      J. Peng, W. Zhang, Q.N. Liu, et al., Prussian blue analogues for sodium-ion batteries: Past, present, and future, Adv. Mater., 34(2022), No. 15, art. No. e2108384. doi: 10.1002/adma.202108384
      [7]
      L. Xu, H. Li, T. Du, et al., An all Prussian blue analog-based aprotic sodium-ion battery, Battery Energy, 1(2022), No. 2, art. No. 20210003. doi: 10.1002/bte2.20210003
      [8]
      H. Zhang, J. Peng, L. Li, et al., Low-cost zinc substitution of iron-based Prussian blue analogs as long lifespan cathode materials for fast charging sodium-ion batteries, Adv. Funct. Mater., 33(2023), No. 2, art. No. 2210725. doi: 10.1002/adfm.202210725
      [9]
      L. Chen, Z.Q. Zhong, S.B. Ren, and D.M. Han, Carbon-coated Na3V2(PO4)3 supported on multiwalled carbon nanotubes for half-/ full-cell sodium-ion batteries, Energy Technol., 8(2020), No. 3, art. No. 1901080. doi: 10.1002/ente.201901080
      [10]
      V. Priyanka, G. Savithiri, R. Subadevi, and M. Sivakumar, An emerging electrochemically active maricite NaMnPO4 as cathode material at elevated temperature for sodium-ion batteries, Appl. Nanosci., 10(2020), No. 10, p. 3945. doi: 10.1007/s13204-020-01506-8
      [11]
      W. Chang, X.Y. Zhang, J. Qu, et al., Freestanding Na3V2O2(PO4)2F/graphene aerogels as high-performance cathodes of sodium-ion full batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 37, p. 41419. doi: 10.1021/acsami.0c11074
      [12]
      D. Ledwoch, J.B. Robinson, D. Gastol, et al., Hard carbon composite electrodes for sodium-ion batteries with nano-zeolite and carbon black additives, Batteries Supercaps, 4(2021), No. 1, p. 163. doi: 10.1002/batt.202000161
      [13]
      W. Sun, Q. Sun, R.F. Lu, et al., Sodium hypophosphite-assist pyrolysis of coal pitch to synthesis P-doped carbon nanosheet anode for ultrafast and long-term cycling sodium-ion batteries, J. Alloys Compd., 889(2021), art. No. 161678. doi: 10.1016/j.jallcom.2021.161678
      [14]
      Y.H. Liu, Q.Z. Liu, C. Jian, et al., Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus, Nat. Commun., 11(2020), art. No. 2520. doi: 10.1038/s41467-020-16077-z
      [15]
      X. Wu, X.X. Lan, R.Z. Hu, Y. Yao, Y. Yu, and M. Zhu, Tin-based anode materials for stable sodium storage: Progress and perspective, Adv. Mater., 34(2022), No. 7, art. No. 2106895. doi: 10.1002/adma.202106895
      [16]
      H. Chen, B.B. Xu, Q.S. Ping, et al., Co2B2O5 as an anode material with high capacity for sodium ion batteries, Rare Met., 39(2020), No. 9, p. 1045. doi: 10.1007/s12598-020-01383-8
      [17]
      H. Qiu, H.Y. Zheng, Y.H. Jin, et al., Mesoporous cubic SnO2–CoO nanoparticles deposited on graphene as anode materials for sodium ion batteries, J. Alloys Compd., 874(2021), art. No. 159967. doi: 10.1016/j.jallcom.2021.159967
      [18]
      L. Coustan, J.M. Tarascon, and C. Laberty-Robert, Thin fiber-based separators for high-rate sodium ion batteries, ACS Appl. Energy Mater., 2(2019), No. 12, p. 8369. doi: 10.1021/acsaem.9b01821
      [19]
      S. Janakiraman, A. Surendran, S. Ghosh, S. Anandhan, and A. Venimadhav, Electroactive poly(vinylidene fluoride) fluoride separator for sodium ion battery with high coulombic efficiency, Solid State Ionics, 292(2016), p. 130. doi: 10.1016/j.ssi.2016.05.020
      [20]
      M.H. Li, G.J. Lu, W.K. Zheng, et al., Multifunctionalized safe separator toward practical sodium-metal batteries with high-performance under high mass loading, Adv. Funct. Mater., 33(2023), No. 26, art. No. 2214759. doi: 10.1002/adfm.202214759
      [21]
      Y. Ansari, B.K. Guo, J.H. Cho, et al., Low-cost, dendrite-blocking polymer–Sb2O3 separators for lithium and sodium batteries, J. Electrochem. Soc., 161(2014), No. 10, p. A1655. doi: 10.1149/2.0631410jes
      [22]
      L.P. Zhang, X.L. Li, M.R. Yang, and W.H. Chen, High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective, Energy Storage Mater., 41(2021), p. 522. doi: 10.1016/j.ensm.2021.06.033
      [23]
      T.M. Zhu, X.X. Zuo, X.X. Lin, et al., High-wettability composite separator embedded with in situ grown TiO2 nanoparticles for advanced sodium-ion batteries, Energy Technol., 10(2022), No. 10, art. No. 2200409. doi: 10.1002/ente.202200409
      [24]
      D. Zhou, X.A. Tang, X. Guo, et al., Polyolefin-based Janus separator for rechargeable sodium batteries, Angew. Chem. Int. Ed., 59(2020), No. 38, p. 16725. doi: 10.1002/anie.202007008
      [25]
      X.H. Ma, F. Qiao, M.F. Qian, et al., Facile fabrication of flexible electrodes with poly(vinylidene fluoride)/Si3N4 composite separator prepared by electrospinning for sodium-ion batteries, Scripta Mater., 190(2021), p. 153. doi: 10.1016/j.scriptamat.2020.08.053
      [26]
      H.C. Gao, B.K. Guo, J. Song, K. Park, and J.B. Goodenough, A composite gel–polymer/glass–fiber electrolyte for sodium-ion batteries, Adv. Energy Mater, 5(2015), No. 9, art. No. 1402235. doi: 10.1002/aenm.201402235
      [27]
      J.I. Kim, Y. Choi, K.Y. Chung, and J.H. Park, A structurable gel–polymer electrolyte for sodium ion batteries, Adv. Funct. Mater., 27(2017), No. 34, art. No. 1701768. doi: 10.1002/adfm.201701768
      [28]
      P.C. Ani, P.U. Nzereogu, A.C. Agbogu, F.I. Ezema, and A.C. Nwanya, Cellulose from waste materials for electrochemical energy storage applications: A review, Appl. Surf. Sci. Adv., 11(2022), art. No. 100298. doi: 10.1016/j.apsadv.2022.100298
      [29]
      J.L. Yang, X.X. Zhao, W. Zhang, et al., Inside back cover: “pore-hopping” ion transport in cellulose-based separator towards high-performance sodium-ion batteries, Angew. Chem. Int. Ed., 62(2023), No. 15, art. No. 202302568. doi: 10.1002/anie.202302568
      [30]
      H.Y. Zhou, J. Gu, W.W. Zhang, C.S. Hu, and X.Y. Lin, Rational design of cellulose nanofibrils separator for sodium-ion batteries, Molecules, 26(2021), No. 18, art. No. 5539. doi: 10.3390/molecules26185539
      [31]
      T.W. Zhang, B. Shen, H.B. Yao, et al., Prawn shell derived chitin nanofiber membranes as advanced sustainable separators for Li/Na-ion batteries, Nano Lett., 17(2017), No. 8, p. 4894. doi: 10.1021/acs.nanolett.7b01875
      [32]
      C.Y. Cao, H.B. Wang, W.W. Liu, X.Z. Liao, and L. Li, Nafion membranes as electrolyte and separator for sodium-ion battery, Int. J. Hydrogen Energy, 39(2014), No. 28, p. 16110. doi: 10.1016/j.ijhydene.2013.12.119
      [33]
      V.C. Ho, B.T.D. Nguyen, H.Y.N. Thi, J.F. Kim, and J. Mun, Poly(dopamine) surface-modified polyethylene separator with electrolyte-philic characteristics for enhancing the performance of sodium-ion batteries, Int. J. Energy Res., 46(2022), No. 4, p. 5177. doi: doi.org/10.1002/er.7510
      [34]
      Y.S. Zhu, F.X. Wang, L.L. Liu, S.Y. Xiao, Y.Q. Yang, and Y.P. Wu, Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries, Sci. Rep., 3(2013), art. No. 3187. doi: 10.1038/srep03187
      [35]
      J.Y. Zheng, X.L. Liu, Y.L. Duan, et al., Stable cross-linked gel terpolymer electrolyte containing methyl phosphonate for sodium ion batteries, J. Membr. Sci., 583(2019), p. 163. doi: 10.1016/j.memsci.2019.04.044
      [36]
      X.H. Ma, Z.H. Zheng, T.W. Zhang, et al., Rational design of glass fiber-cellulose composite separator for sodium-ion batteries, Scripta Mater., 232(2023), art. No. 115481. doi: 10.1016/j.scriptamat.2023.115481
      [37]
      R. Arunkumar, A.P. Vijaya Kumar Saroja, and R. Sundara, Barium titanate-based porous ceramic flexible membrane as a separator for room-temperature sodium-ion battery, ACS Appl. Mater. Interfaces, 11(2019), No. 4, p. 3889. doi: 10.1021/acsami.8b17887
      [38]
      S. Janakiraman, A. Agrawal, R. Biswal, and A. Venimadhav, An amorphous polyvinylidene fluoride-co-hexafluoropropylene based gel polymer electrolyte for sodium-ion cells, Appl. Surf. Sci. Adv., 6(2021), art. No. 100139. doi: 10.1016/j.apsadv.2021.100139
      [39]
      D.N. Lei, Y.B. He, H.J. Huang, et al., Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery, Nat. Commun., 10(2019), No. 1, art. No. 4244. doi: 10.1038/s41467-019-11960-w
      [40]
      N. Mittal, S.A. Tien, E. Lizundia, and M. Niederberger, Hierarchical nanocellulose-based gel polymer electrolytes for stable Na electrodeposition in sodium ion batteries, Small, 18(2022), No. 43, art. No. 2107183. doi: 10.1002/smll.202107183

    Catalog


    • /

      返回文章
      返回