留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 2
Feb.  2024

图(7)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1376
  • HTML全文浏览量:  156
  • PDF下载量:  29
  • 被引次数: 0
Shixue Liu, Zhijing Liu, Shuxing Zhang, and Hao Wu, Lattice Boltzmann simulation study of anode degradation in solid oxide fuel cells during the initial aging process, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 405-411. https://doi.org/10.1007/s12613-023-2692-8
Cite this article as:
Shixue Liu, Zhijing Liu, Shuxing Zhang, and Hao Wu, Lattice Boltzmann simulation study of anode degradation in solid oxide fuel cells during the initial aging process, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 405-411. https://doi.org/10.1007/s12613-023-2692-8
引用本文 PDF XML SpringerLink
研究论文

固体氧化物燃料电池运行初期阳极衰减的玻尔兹曼方法研究


  • 通讯作者:

    刘世学    E-mail: liushixue@cgnpc.com.cn

文章亮点

  • (1) 发现电池运行初期阳极功能区附近有较大的三相线长度以及材料连通性减小。
  • (2) 使用格子玻尔兹曼方法模拟区分出电极的活性衰减和结构衰减。
  • (3) 电极活性衰减和结构衰减均来源于阳极镍催化剂的迁移和粗化。
  • 固体氧化物燃料电池在运行初始阶段有较快的性能衰减,有必要进行量化的衰减机理分析。本文使用聚焦离子束扫描电子显微镜对固体氧化物燃料电池多孔阳极微结构进行测试并完成三维重构,然后利用格子玻尔兹曼方法对重构电极内部多物理场过程及电化学反应进行了模拟。该方法用于工业尺寸单电池的测试和仿真模拟,对一个刚还原的电池与一个经过初期衰减的电池进行了比较分析。三维重构的统计结果显示跟刚还原的电池相比,经过初期衰减的电池电极内三相线长度和镍催化剂的连通性有明显减小。格子玻尔兹曼模拟结果显示初期衰减阶段电极活性衰减的贡献比结构衰减更大,经过初期衰减的电池电化学反应区域从阳极功能区扩展到了阳极支撑层。从衰减原因来看,电极活性衰减和结构衰减均来源于阳极镍催化剂的迁移和粗化。
  • Research Article

    Lattice Boltzmann simulation study of anode degradation in solid oxide fuel cells during the initial aging process

    + Author Affiliations
    • For present solid oxide fuel cells (SOFCs), rapid performance degradation is observed in the initial aging process, and the discussion of the degradation mechanism necessitates quantitative analysis. Herein, focused ion beam-scanning electron microscopy was employed to characterize and reconstruct the ceramic microstructures of SOFC anodes. The lattice Boltzmann method (LBM) simulation of multiphysical and electrochemical processes in the reconstructed models was performed. Two samples collected from industrial-size cells were characterized, including a reduced reference cell and a cell with an initial aging process. Statistical parameters of the reconstructed microstructures revealed a significant decrease in the active triple-phase boundary and Ni connectivity in the aged cell compared with the reference cell. The LBM simulation revealed that activity degradation is dominant compared with microstructural degradation during the initial aging process, and the electrochemical reactions spread to the support layer in the aged cell. The microstructural and activity degradations are attributed to Ni migration and coarsening.
    • loading
    • [1]
      S.C. Singhal, and K. Kendall, High-temperature Solid Oxide Fuel Cells : Fundamentals , Design and Applications, Elsevier, New York, 2003.
      [2]
      S.X. Liu, C. Song, and Z.J. Lin, The effects of the interconnect rib contact resistance on the performance of planar solid oxide fuel cell stack and the rib design optimization, J. Power Sources, 183(2008), No. 1, p. 214. doi: 10.1016/j.jpowsour.2008.04.054
      [3]
      Q.P. Fang, L. Blum, and D. Stolten, Electrochemical performance and degradation analysis of an SOFC short stack following operation of more than 100, 000 hours, J. Electrochem. Soc., 166(2019), No. 16, p. F1320. doi: 10.1149/2.0751916jes
      [4]
      A. Hauch and M. Mogensen, Ni/YSZ electrode degradation studied by impedance spectroscopy: Effects of gas cleaning and current density, Solid State Ionics, 181(2010), No. 15-16, p. 745. doi: 10.1016/j.ssi.2010.04.001
      [5]
      S. Koch, P.V. Hendriksen, M. Mogensen, et al., Solid oxide fuel cell performance under severe operating conditions, Fuel Cells, 6(2006), No. 2, p. 130. doi: 10.1002/fuce.200500112
      [6]
      H. Sumi, R. Kishida, J.Y. Kim, H. Muroyama, T. Matsui, and K. Eguchi, Correlation between microstructural and electrochemical characteristics during redox cycles for Ni–YSZ anode of SOFCs, J. Electrochem. Soc., 157(2010), No. 12, art. No. B1747. doi: 10.1149/1.3491345
      [7]
      N. Vivet, S. Chupin, E. Estrade, et al., 3D Microstructural characterization of a solid oxide fuel cell anode reconstructed by focused ion beam tomography, J. Power Sources, 196(2011), No. 18, p. 7541. doi: 10.1016/j.jpowsour.2011.03.060
      [8]
      H. Iwai, N. Shikazono, T. Matsui, et al., Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique, J. Power Sources, 195(2010), No. 4, p. 955. doi: 10.1016/j.jpowsour.2009.09.005
      [9]
      G. Brus, K. Miyawaki, H. Iwai, M. Saito, and H. Yoshida, Tortuosity of an SOFC anode estimated from saturation currents and a mass transport model in comparison with a real micro-structure, Solid State Ionics, 265(2014), p. 13. doi: 10.1016/j.ssi.2014.07.002
      [10]
      Z.J. Jiao, N. Shikazono, and N. Kasagi, Quantitative characterization of SOFC nickel–YSZ anode microstructure degradation based on focused-ion-beam 3D-reconstruction technique, J. Electrochem. Soc., 159(2012), No. 3, p. B285. doi: 10.1149/2.045203jes
      [11]
      Z.J. Jiao, G. Lee, N. Shikazono, and N. Kasagi, Quantitative study on the correlation between solid oxide fuel cell Ni–YSZ composite anode performance and sintering temperature based on three-dimensional reconstruction, J. Electrochem. Soc., 159(2012), No. 7, p. F278. doi: 10.1149/2.056207jes
      [12]
      Z.J. Jiao and N. Shikazono, Quantitative study on the correlation between solid oxide fuel cell Ni–YSZ composite anode performance and reduction temperature based on three-dimensional reconstruction, J. Electrochem. Soc., 162(2015), No. 6, p. F571. doi: 10.1149/2.0721506jes
      [13]
      M. Trini, P.S. Jørgensen, A. Hauch, J.J. Bentzen, P.V. Hendriksen, and M. Chen, 3D microstructural characterization of Ni/YSZ electrodes exposed to 1 year of electrolysis testing, J. Electrochem. Soc., 166(2019), No. 2, p. F158. doi: 10.1149/2.1281902jes
      [14]
      M. Trini, A. Hauch, S. De Angelis, X. Tong, P.V. Hendriksen, and M. Chen, Comparison of microstructural evolution of fuel electrodes in solid oxide fuel cells and electrolysis cells, J. Power Sources, 450(2020), art. No. 227599. doi: 10.1016/j.jpowsour.2019.227599
      [15]
      X. Yang, Z.H. Du, Q. Zhang, et al., Effects of operating conditions on the performance degradation and anode microstructure evolution of anode-supported solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1181-1189. doi: 10.1007/s12613-023-2616-7
      [16]
      H. Yakabe, M. Hishinuma, M. Uratani, Y. Matsuzaki, and I. Yasuda, Evaluation and modeling of performance of anode-supported solid oxide fuel cell, J. Power Sources, 86(2000), No. 1-2, p. 423. doi: 10.1016/S0378-7753(99)00444-9
      [17]
      L. Chen, A. He, J.L. Zhao, et al., Pore-scale modeling of complex transport phenomena in porous media, Prog. Energy Combust. Sci., 88(2022), art. No. 100968. doi: 10.1016/j.pecs.2021.100968
      [18]
      K.N. Grew, A.S. Joshi, and W.K.S. Chiu, Direct internal reformation and mass transport in the solid oxide fuel cell anode: A pore-scale lattice boltzmann study with detailed reaction kinetics, Fuel Cells, 10(2010), No. 6, p. 1143. doi: 10.1002/fuce.201000078
      [19]
      K.N. Grew, A.S. Joshi, A.A. Peracchio, and W.K.S. Chiu, Pore-scale investigation of mass transport and electrochemistry in a solid oxide fuel cell anode, J. Power Sources, 195(2010), No. 8, p. 2331. doi: 10.1016/j.jpowsour.2009.10.067
      [20]
      N. Shikazono, D. Kanno, K. Matsuzaki, H. Teshima, S. Sumino, and N. Kasagi, Numerical assessment of SOFC anode polarization based on three-dimensional model microstructure reconstructed from FIB-SEM images, J. Electrochem. Soc., 157(2010), No. 5, art. No. B665. doi: 10.1149/1.3330568
      [21]
      D. Kanno, N. Shikazono, N. Takagi, K. Matsuzaki, and N. Kasagi, Evaluation of SOFC anode polarization simulation using three-dimensional microstructures reconstructed by FIB tomography, Electrochim. Acta, 56(2011), No. 11, p. 4015. doi: 10.1016/j.electacta.2011.02.010
      [22]
      T. Shimura, Z.J. Jiao, and N. Shikazono, Evaluation of nickel-yttria stabilized zirconia anode degradation during discharge operation and redox cycles operation by electrochemical calculation, J. Power Sources, 330(2016), p. 149. doi: 10.1016/j.jpowsour.2016.09.006
      [23]
      Z.W. Lyu, S.X. Liu, Y.G. Wang, et al., Quantifying the performance evolution of solid oxide fuel cells during initial aging process, J. Power Sources, 510(2021), art. No. 230432. doi: 10.1016/j.jpowsour.2021.230432
      [24]
      G.J. Nelson, K.N. Grew, J.R. Izzo Jr, et al., Three-dimensional microstructural changes in the Ni–YSZ solid oxide fuel cell anode during operation, Acta Mater., 60(2012), No. 8, p. 3491. doi: 10.1016/j.actamat.2012.02.041
      [25]
      M. Shishkin and T. Ziegler, Oxidation of H2, CH4, and CO molecules at the interface between nickel and yttria-stabilized zirconia: A theoretical study based on DFT, J. Phys. Chem. C, 113(2009), No. 52, p. 21667. doi: 10.1021/jp905615c
      [26]
      M. Shishkin and T. Ziegler, Hydrogen oxidation at the Ni/yttria-stabilized zirconia interface: A study based on density functional theory, J. Phys. Chem. C, 114(2010), No. 25, p. 11209. doi: 10.1021/jp1030575
      [27]
      C.S. Cucinotta, M. Bernasconi, and M. Parrinello, Hydrogen oxidation reaction at the Ni/YSZ anode of solid oxide fuel cells from first principles, Phys. Rev. Lett., 107(2011), No. 20, art. No. 206103.
      [28]
      S.C. Ammal and A. Heyden, Combined DFT and microkinetic modeling study of hydrogen oxidation at the Ni/YSZ anode of solid oxide fuel cells, J. Phys. Chem. Lett., 3(2012), No. 19, p. 2767. doi: 10.1021/jz301132b
      [29]
      S. Liu, T. Ishimoto, D.S. Monder, and M. Koyama, First-principles study of oxygen transfer and hydrogen oxidation processes at the Ni–YSZ–gas triple phase boundaries in a solid oxide fuel cell anode, J. Phys. Chem. C, 119 (2015), p. 27603. doi: 10.1021/acs.jpcc.5b10878

    Catalog


    • /

      返回文章
      返回